單細(xì)胞高通量細(xì)胞激光牽張拉伸應(yīng)力加載與力學(xué)屬性分析系統(tǒng)
Optical Stretcher是用于細(xì)胞生物力學(xué)高通量測量研究的激光光學(xué)牽張拉伸**平臺(tái)技術(shù)。
****臺(tái)用來高通量測量單個(gè)懸浮細(xì)胞(懸液細(xì)胞)的變形能力設(shè)備。
該激光光學(xué)牽張拉伸器是個(gè)可以安裝在任何相位差顯微鏡上的模塊。溫度穩(wěn)定和激光**的顯微鏡系統(tǒng)。
Optical Stretcher
**研究(Innovation in Research)
Optical Stretcher激光光學(xué)牽張拉伸器是一種新穎的用來測量和分析單個(gè)懸液細(xì)胞生物力學(xué)特性(比如:如彈性和松弛)的激光工具。
非接觸式細(xì)胞形變(Contact-free cell deformation)
無接觸式細(xì)胞形變“開放=”0“的風(fēng)格=”2“]是激光力引起的懸浮細(xì)胞形變,這決定**的無接觸式測量。這可確保均勻的細(xì)胞處理,避免因接觸引起的細(xì)胞反應(yīng)文物。
高通量單細(xì)胞流變
通過集成的微流體系統(tǒng)可以很可以容易地測定300個(gè)細(xì)胞/小時(shí)。這樣就可以在**時(shí)間收集細(xì)胞流變顯著的統(tǒng)計(jì)數(shù)據(jù)
省時(shí),自動(dòng)測量(Timesaving, automated measurements)
對應(yīng)于用戶定義的拉伸模式,細(xì)胞被自動(dòng)傳送到測量區(qū)域進(jìn)行形變。在光學(xué)拉伸加載運(yùn)行實(shí)驗(yàn)中,你可以專注于闡述實(shí)驗(yàn)結(jié)果。
產(chǎn)品規(guī)格
-
包括有兩個(gè)壓力控制通道的微流體系統(tǒng)
-
*大每個(gè)光纖2功率W摻鐿光纖激光器
-
安裝倒置相差顯微鏡
-
激光**和溫度控制
-
可選用組合熒光顯微鏡
軟件規(guī)格
-
使用CellStretcher模塊控制所有組件和自動(dòng)測量細(xì)胞
-
由CellEvaluator提取記錄顯微圖像形變數(shù)據(jù)
-
由CellReporter統(tǒng)計(jì)分析和可視化特性參數(shù)
-
為自己的統(tǒng)計(jì)分析訪問原始數(shù)據(jù)
產(chǎn)品特點(diǎn):
-
非接觸式和無標(biāo)記的細(xì)胞測量
-
高通量-250細(xì)胞/小時(shí)
-
省時(shí)的自動(dòng)測量
-
模塊可以在任何倒置相差顯微鏡進(jìn)行安裝
-
外殼激光**和穩(wěn)定的溫度
-
數(shù)據(jù)評估軟件
產(chǎn)品規(guī)格:
Fibolux laser system 2 W
reliable microfluidic system for easy probe handling
尺寸 cm (w x h x d): 70 x 80 x 100
Options
combination with fluorescence microscopy
技術(shù)
optical stretcher 是一種新穎的微操縱單個(gè)生物細(xì)胞激光工具,探討在懸浮液的粘彈性性質(zhì)[1]。
通過兩個(gè)對立的激光束鉗持一個(gè)細(xì)胞,進(jìn)行牽張拉伸細(xì)胞兩邊。更高的激光功率使細(xì)胞發(fā)生形變。
細(xì)胞的形變是由CCD相機(jī)記錄,并由一專門設(shè)計(jì)的軟件進(jìn)行評估。
Optical Stretcher 測量室集成有微流系統(tǒng),使得細(xì)胞容易地一個(gè)接一個(gè)地輸送
可以達(dá)到每小時(shí)約250個(gè)細(xì)胞的高吞吐率,允許相對于其它工具,例如原子力顯微鏡(AFM)更好的統(tǒng)計(jì)信息。
Momentum transfer at the cell surface
Cell mechanics as a disease marker
The physical mechanics of cells are important for their regular, biological functioning and are regulated by a structure called the cytoskeleton. It is involved in many vital processes of the cell. If these are changes this naturally results also in changes of the biomechanical properties, which can be measured with the Optical Stretcher. There is already published data for cancer [2, 3] and for the effect of cell aging [4].
Several ongoing studies examine the ability of the Optical Stretcher to differentiate between the stages of a cancer tumor, making it a valuable tool for both scientific research and clinical diagnosis [5].
Cell types can be differentiated by their deformation in the optical stretcher
細(xì)胞形變力源自激光。當(dāng)光被折射在細(xì)胞表面存在的光子的動(dòng)量的變化。因?yàn)檎w動(dòng)量必須始終保守有一個(gè)在垂直于作用于它的力形式的動(dòng)量轉(zhuǎn)移到細(xì)胞表面。
Research
Our device allows various applications in basic research of biophysics, biology & medicine.
Industry
Due to the high-throughput the Optical Stretcher is suitable for industrial drug-screening.
Clinical Diagnostic
First clinical trials with breast cancer tumors show a different deformation of cancerous cells.
應(yīng)用:
生物物理研究(Biophysical Research)
Characterization of fundamental cytoskeletal functions and processes in eukaryotic cells
**篩選(Drug Screening)
Testing new substances and their efficiency on a cellular basis
Aging proscesses
Identification of markers for cell aging and testing of anti-aging substances
干細(xì)胞分化(Differentiation)
Utilization of cell stiffness as a marker for differentiation processes in stem cells
Immune response
Investigation of cytoskeletal changes of immune-activated cells
Mechanisms of diseases
New insight in cellular changes caused by diseases such as cancer, malaria or sepsis
Publications
Optical Stretcher Technology
Lincoln, B., Schinkinger, S., Travis, K., Wottawah, F., Ebert, S., Sauer, F., Guck, J., 2007. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed. Microdevices 9, 703–710. doi:10.1007/s10544-007-9079-x
Ebert, S., Travis, K., Lincoln, B., Guck, J., 2007. Fluorescence ratio thermometry in a microfluidic dual-beam laser trap.Opt. Express 15, 15493–15499. doi:10.1364/OE.15.015493
Jensen-McMullin, C., Lee, H.P., Lyons, E.R.L., 2005. Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap. Opt. Express 13, 2634–2642. doi:10.1364/OPEX.13.002634
Wottawah, F., Schinkinger, S., Lincoln, B., Ananthakrishnan, R., Romeyke, M., Guck, J., K?s, J., 2005.Optical Rheology of Biological Cells. Phys. Rev. Lett. 94, 098103. doi:10.1103/PhysRevLett.94.098103
Lincoln, B., Erickson, H.M., Schinkinger, S., Wottawah, F., Mitchell, D., Ulvick, S., Bilby, C., Guck, J., 2004. Deformability-based flow cytometry.Cytometry A 59A, 203–209. doi:10.1002/cyto.a.20050
Theoretical Models
Ananthakrishnan, R., Guck, J., Wottawah, F., Schinkinger, S., Lincoln, B., Romeyke, M., Kas, J., 2005. Modelling the structural response of an eukaryotic cell in the optical stretcher. Curr. Sci. 88.
B. Bareil, P., Sheng, Y., Chiou, A., 2006. Local scattering stress distribution on surface of a spherical cell in optical stretcher. Opt. Express 14, 12503–12509. doi:10.1364/OE.14.012503
Bareil, P.B., Sheng, Y., Chen, Y.-Q., Chiou, A., 2007. Calculation of spherical red blood cell deformation in a dual-beam optical stretcher. Opt. Express 15, 16029–16034. doi:10.1364/OE.15.016029
Boyde, L., Ekpenyong, A., Whyte, G., Guck, J., 2012. Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz–Mie theory. Appl. Opt. 51, 7934–7944. doi:10.1364/AO.51.007934
Ekpenyong, A.E., Posey, C.L., Chaput, J.L., Burkart, A.K., Marquardt, M.M., Smith, T.J., Nichols, M.G., 2009. Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher.Appl. Opt. 48, 6344–6354. doi:10.1364/AO.48.006344
Teo, S.-K., Goryachev, A.B., Parker, K.H., Chiam, K.-H., 2010. Cellular deformation and intracellular stress propagation during optical stretching. Phys. Rev. E 81, 051924. doi:10.1103/PhysRevE.81.051924
Cancer research and diagnostics
Martin, M., Müller, K., Cadenas, C., Hermes, M., Zink, M., Hengstler, J.G., K?s, J.A., 2012. ERBB2 overexpression triggers transient high mechanoactivity of breast tumor cells. Cytoskeleton 69, 267–277. doi:10.1002/cm.21023
Fritsch, A., H?ckel, M., Kiessling, T., Nnetu, K.D., Wetzel, F., Zink, M., K?s, J.A., 2010. Are biomechanical changes necessary for tumour progression?Nat. Phys. 6, 730–732. doi:10.1038/nphys1800
Brunner, C., Niendorf, A., K?s, J.A., 2009. Passive and active single-cell biomechanics: a new perspective in cancer diagnosis. Soft Matter 5, 2171–2178. doi:10.1039/B807545J
Remmerbach, T.W., Wottawah, F., Dietrich, J., Lincoln, B., Wittekind, C., Guck, J., 2009. Oral Cancer Diagnosis by Mechanical Phenotyping. Cancer Res. 69, 1728–1732. doi:10.1158/0008-5472.CAN-08-4073
Martin, M., Mueller, K., Wottawah, F., Schinkinger, S., Lincoln, B., Romeyke, M., K?s, J.A., 2006. Feeling with light for cancer. p. 60800P–60800P–10. doi:10.1117/12.637899
Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, D., Erickson, H.M., Ananthakrishnan, R., Mitchell, D., K?s, J., Ulvick, S., Bilby, C., 2005. Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence. Biophys. J. 88, 3689–3698. doi:10.1529/biophysj.104.045476
Stem cell research
Ekpenyong, A.E., Whyte, G., Chalut, K., Pagliara, S., Lautenschlaeger, F., Fiddler, C., Paschke, S., Keyser, U.F., Chilvers, E.R., Guck, J., 2012.Viscoelastic Properties of Differentiating Blood Cells Are Fate- and Function-Dependent. Plos One 7, e45237. doi:10.1371/journal.pone.0045237
Galle, J., Bader, A., Hepp, P., Grill, W., Fuchs, B., Kas, J.A., Krinner, A., MarquaB, B., Muller, K., Schiller, J., Schulz, R.M., von Buttlar, M., von der Burg, E., Zscharnack, M., Loffler, M., 2010. Mesenchymal Stem Cells in Cartilage Repair: State of the Art and Methods to monitor Cell Growth, Differentiation and Cartilage Regeneration. Curr. Med. Chem. 17, 2274–2291. doi:10.2174/092986710791331095
Maloney, J.M., Nikova, D., Lautenschlager, F., Clarke, E., Langer, R., Guck, J., Van Vliet, K.J., 2010. Mesenchymal Stem Cell Mechanics from the Attached to the Suspended State. Biophys. J. 99, 2479–2487. doi:10.1016/j.bpj.2010.08.052
Lautenschl?ger, F., Paschke, S., Schinkinger, S., Bruel, A., Beil, M., Guck, J., 2009. The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc. Natl. Acad. Sci. 106, 15696–15701. doi:10.1073/pnas.0811261106
Basic research
Gyger, M., Stange, R., Kiessling, T.R., Fritsch, A., Kostelnik, K.B., Beck-Sickinger, A.G., Zink, M., Kaes, J.A., 2014. Active contractions in single suspended epithelial cells. Eur. Biophys. J. Biophys. Lett. 43, 11–23. doi:10.1007/s00249-013-0935-8
Seltmann, K., Fritsch, A.W., K?s, J.A., Magin, T.M., 2013. Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc. Natl. Acad. Sci. 201310493. doi:10.1073/pnas.1310493110
Kie?ling, T.R., Stange, R., K?s, J.A., Fritsch, A.W., 2013. Thermorheology of living cells—impact of temperature variations on cell mechanics. New J. Phys. 15, 045026. doi:10.1088/1367-2630/15/4/045026
Kie?ling, T.R., Herrera, M., Nnetu, K.D., Balzer, E.M., Girvan, M., Fritsch, A.W., Martin, S.S., K?s, J.A., Losert, W., 2013. Analysis of multiple physical parameters for mechanical phenotyping of living cells. Eur. Biophys. J. 42, 383–394. doi:10.1007/s00249-013-0888-y
Paschke, S., Weidner, A.F., Paust, T., Marti, O., Beil, M., Ben-Chetrit, E., 2013. Technical advance: Inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. J. Leukoc. Biol. 94, 1091–1096. doi:10.1189/jlb.1012510
Chalut, K.J., H?pfler, M., Lautenschl?ger, F., Boyde, L., Chan, C.J., Ekpenyong, A., Martinez-Arias, A., Guck, J., 2012. Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells. Biophys. J. 103, 2060–2070. doi:10.1016/j.bpj.2012.10.015
Matthews, H.K., Delabre, U., Rohn, J.L., Guck, J., Kunda, P., Baum, B., 2012. Changes in Ect2 localization couple actomyosin-dependent cell shape changes to mitotic progression. Dev. Cell 23, 371–383. doi:10.1016/j.devcel.2012.06.003
Mauritz, J.M.A., Esposito, A., Tiffert, T., Skepper, J.N., Warley, A., Yoon, Y.-Z., Cicuta, P., Lew, V.L., Guck, J.R., Kaminski, C.F., 2010. Biophotonic techniques for the study of malaria-infected red blood cells. Med. Biol. Eng. Comput. 48, 1055–1063. doi:10.1007/s11517-010-0668-0
Rusciano, G., 2010. Experimental analysis of Hb oxy–deoxy transition in single optically stretched red blood cells. Phys. Med. 26, 233–239. doi:10.1016/j.ejmp.2010.02.001
Aging processes
Schulze, C., Wetzel, F., Kueper, T., Malsen, A., Muhr, G., Jaspers, S., Blatt, T., Wittern, K.-P., Wenck, H., K?s, J.A., 2010.Stiffening of Human Skin Fibroblasts with Age. Biophys. J. 99, 2434–2442. doi:10.1016/j.bpj.2010.08.026
Vesicles
Solmaz, M.E., Sankhagowit, S., Biswas, R., Mejia, C.A., Povinelli, M.L., Malmstadt, N., 2013. Optical stretching as a tool to investigate the mechanical properties of lipid bilayers. Rsc Adv. 3, 16632–16638. doi:10.1039/c3ra42510j
Solmaz, M.E., Biswas, R., Sankhagowit, S., Thompson, J.R., Mejia, C.A., Malmstadt, N., Povinelli, M.L., 2012. Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap. Biomed. Opt. Express 3, 2419–2427. doi:10.1364/BOE.3.002419
Technical advances
Bellini, N., Bragheri, F., Cristiani, I., Guck, J., Osellame, R., Whyte, G., 2012. Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher. Biomed. Opt. Express 3, 2658–2668. doi:10.1364/BOE.3.002658
Bellini, N., Vishnubhatla, K.C., Bragheri, F., Ferrara, L., Minzioni, P., Ramponi, R., Cristiani, I., Osellame, R., 2010.Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt. Express 18, 4679–4688. doi:10.1364/OE.18.004679