微滴單細(xì)胞包裝系統(tǒng)
簡(jiǎn)介:
我們的半自動(dòng)系統(tǒng)將單細(xì)胞或生物分子包裝進(jìn)微滴中,為后續(xù)的篩選和分析做準(zhǔn)備。它的包裝效率可以達(dá)到每秒70000個(gè)微滴,且流速可以嚴(yán)格控制。這臺(tái)設(shè)備使得快速且敏感地檢測(cè)微滴中單個(gè)細(xì)胞分泌的或者細(xì)胞相關(guān)的蛋白成為可能。
這一包裝系統(tǒng)不影響細(xì)胞活性,由于微滴的大小和體積有很大范圍的可變性,因而能夠用于不同大小的細(xì)胞類(lèi)型。這些微滴被新式的表面活性劑穩(wěn)定,細(xì)胞能夠在其中生長(zhǎng),甚至能培養(yǎng)或保存許多天。
主要特點(diǎn):
·半自動(dòng)微滴生成器
·在微滴中包裝單個(gè)細(xì)胞或生物分子
·高速生成微滴(高達(dá)70000/秒)
·可同時(shí)在微滴中摻入探針和細(xì)胞,使得能夠敏感地檢測(cè)到分泌蛋白(例如抗體,生長(zhǎng)因子,細(xì)胞因子,酶等)
·用戶(hù)決定微流體流動(dòng)速率
·微滴生成的光學(xué)成像經(jīng)過(guò)嚴(yán)格的質(zhì)量管理/測(cè)試(QA/QC)
·大范圍的微滴大小和體積
應(yīng)用舉例:
·生物**的發(fā)現(xiàn):從初始漿細(xì)胞(B細(xì)胞或雜交瘤細(xì)胞)中發(fā)現(xiàn)抗體或轉(zhuǎn)錄產(chǎn)物;
·生物加工:快速鑒定和分離高表達(dá)克?。?/span>
·診斷:探測(cè)并測(cè)試循環(huán)腫瘤和其他**相關(guān)細(xì)胞;
·抗藥性研究:從大量的微生物或腫瘤細(xì)胞集群中鑒定和分離稀有的耐藥細(xì)胞;
·酶的進(jìn)化:篩選數(shù)百萬(wàn)酶結(jié)構(gòu)以選擇*高效的突變體;
·合成生物學(xué):研究工程微生物庫(kù)中產(chǎn)生的大量有價(jià)值的分子。
技術(shù)參數(shù):
規(guī)格
|
|
樣品輸入格式
|
注射泵
|
樣品輸入體積
|
50μL-1mL
|
工作流程
|
生成微滴
|
操作環(huán)境
|
|
連續(xù)的油相
|
50μL/hr-2000μL/hr
|
水相
|
50μL/hr-2000μL/hr
|
微滴體積
|
0.2pL-1.7nL
|
微滴產(chǎn)率
|
60-70000每秒
|
系統(tǒng)規(guī)格
|
|
生物芯片兼容性
|
Pico-GenTM 微滴生物芯片(更多其他芯片使用請(qǐng)聯(lián)系Sphere Fluidics)
|
質(zhì)量(大約)
|
50kg
|
大小(大約)
|
130cmX60cmX60cm(寬X高X深)
|
電壓[頻率]
|
110V到240V[@50/60hz]
|
能耗
|
300W(*大)
|
光學(xué)
|
|
照明
|
鹵素?zé)簦ò坠猓?/span>
|
相機(jī)
|
高速CMOS(1696X1710像素)
全分辨率下500fps,弱分辨率下高達(dá)200000fps
|
相機(jī)光譜敏感度
|
400nm-900nm
|
PC
|
|
電腦
|
Dell Optiplex 7010(4GB RAM;500GB硬盤(pán))或等價(jià)物
|
PC操作系統(tǒng)
|
Microsoft Windows 7 Professional SP1
|
監(jiān)視器
|
彩色LCD(21’’)
|
外接
|
2USB,1以太網(wǎng)
|
設(shè)備控制軟件
|
neMESYS 注射泵軟件,相機(jī)軟件
|
工作環(huán)境
|
|
間隙
|
30cm
|
操作溫度
|
21±5℃
|
1. Abalde-Cela et al.
2015. High-throughput detection of ethanol-producing cyanobacteria in a
microdroplet platform. J. R. Soc. Interface 12: 2015.0216
2. Bakewell
et al. 2015. Information processing tools for extracting the electrical
properties of nanoparticles. AIP Conf. Proc. 1646, 17-24
3. Bakewell
et al. Exploring and Evaluating Micro-environment and Nanoparticle
Dielectrophoretic-induced Interactions with Image Analysis Methods. Materials
Today: Proceedings, 867-874, 3(3) 2016.
4. Chokkalingam
et al. 2013. Probing cellular heterogeneity in cytokine-secreting immune cells
using droplet-based microfluidics. Lab Chip 13: 4740-4744
5. Holmes et
al. 2014. Separation of blood cells with differing deformability using
deterministic lateral displacement. Interface Focus 4. 20140011
6. Kruger
et al. 2014. Deformability-based red blood cell separation in deterministic
lateral displacement devices—A simulation study. Biomicrofluidics 8; 054114
7. Ma et
al. 2012. Fabrication of Microgel Particles with Complex Shape via Selective
Polymerization of Aqueous Two-Phase Systems. Small. 8(15): 2356-2360
8. Ma et al. 2013. Monodisperse collagen–gelatin
beads as potential platforms for 3D cell culturing. J. Mater. Chem. B, 1;
5128-5136
9.Salmon
et al. 2016. Monitoring early-stage nanoparticle assembly in microdroplets by
optical spectroscopy and SERS. Small. Doi:10.1002/smll.201503513
10.
Sherwood et al. 2014. Spatial Distributions of Red Blood Cells Significantly
Alter Local Haemodynamics. PLOS One 9(6): :e100473
11. Shim et al. 2013.
Ultrarapid Generation of Femtoliter Microfluidic Droplets for
Single-Molecule-Counting Immunoassays. ACS Nano 7(7): 5955-5964
12. Smith et al. 2013.
Sensitive, High Throughput Detection of Proteins in Individual,
Surfactant-Stabilized Picoliter Droplets Using Nanoelectrospray Ionization Mass
Spectrometry. Analytical Chemistry. 85(8): 3812-3816
13. Parker, R. M. et
al. 2015. Electrostatically directed self-assembly of ultrathin supramolecular
polymer microcapsules. Advanced Functional Materials. 25(26): 4091-4100.
14. Use
of standards for digital biological information in the design, construction and
description of a synthetic biological system – Guide. 2015. PAS 246:2015