BiospaceLab PhotonIMAGER小動(dòng)物活體光學(xué)成像系統(tǒng)
小動(dòng)物活體光學(xué)成像系統(tǒng)(photonimager)是市場(chǎng)上**的一款能夠動(dòng)態(tài)收集和定量檢測(cè)生物體內(nèi)和體外熒光與生物發(fā)光信號(hào)的成像系統(tǒng)。
一個(gè)體外內(nèi)均可獨(dú)特的模塊化用于檢測(cè)、定位、定量動(dòng)態(tài)生物熒光或熒光信號(hào)儀器
產(chǎn)品特點(diǎn):
* 3D/4D成像
*s事實(shí)顯微觀察
*多譜段的分析成像
* X-射線成像
* 實(shí)時(shí)生物發(fā)光和熒光成像系統(tǒng)
* 模塊化的儀器用于實(shí)時(shí)檢測(cè)、定位、定量分析體內(nèi)或體外的生物發(fā)光或熒光信號(hào)
* 光譜范圍寬,從藍(lán)光到近紅外光,激發(fā)光波長(zhǎng)從450-1000nm
* 從個(gè)體到細(xì)胞水平
* 高靈敏度,加強(qiáng)型CCD相機(jī),無(wú)需更長(zhǎng)時(shí)間曝光和像素Binning,可檢測(cè)微弱信號(hào)
* 23ms的高時(shí)間分辨率
* **的信號(hào)定位和定量
* 檢測(cè)窗口可選整個(gè)動(dòng)物或某一解剖部位
* 實(shí)時(shí)信號(hào)獲取可分析每個(gè)樣本的發(fā)射光峰值時(shí)間
* 模塊化設(shè)計(jì)方便添加或升級(jí)模塊:
* Macrolens 模塊用于更高分辨率成像
* Macro2Micro 模塊用于微米級(jí)高分辨率成像
* Multispectral 模塊用于多光譜成像
* 4-View 模塊可從4個(gè)角度觀察圖像
* X-Ray 模塊用于解剖部位定位
* In Actio? 模塊用于自由活動(dòng)動(dòng)物的動(dòng)力學(xué)成像
* 操作方便
* 溫控平臺(tái)和麻醉系統(tǒng)方便操作動(dòng)物
* 高通量縱向研究系統(tǒng),*多可同時(shí)處理5只小鼠
應(yīng)用:
生物體內(nèi)分布
癌癥研究
基因表達(dá)研究
傳染病研究
神經(jīng)學(xué)
藥代動(dòng)力學(xué)
干細(xì)胞研究
技術(shù)參數(shù):
|
PhotonIMAGER RT
|
PhotonIMAGER Optima
|
照相機(jī)
|
傳感器
|
加強(qiáng)型CCD
|
加強(qiáng)型CCD
|
鏡頭
|
24mm,f/1.4-22
|
50mm,f/1.2-16
|
運(yùn)行溫度
|
-25℃
|
-25℃
|
性能
|
檢測(cè)波長(zhǎng)范圍
|
370-900nm
|
370-900nm
|
時(shí)間分辨率
|
23ms
|
23ms
|
視野范圍
|
*小3.4×2.8mm
|
*小3.4×2.8mm
|
*大25.5×18cm
|
*大31.5×23.5cm
|
光源
|
150W鹵素?zé)?
|
150W鹵素?zé)?
|
熒光
|
多種波長(zhǎng)可選
|
多種波長(zhǎng)可選
|
濾光片
|
激發(fā)光濾光片
|
450-750nm
|
450-1000nm
|
發(fā)射光濾光片
|
6個(gè)
|
10個(gè)
|
混合像元分解
|
有
|
有
|
多種標(biāo)記功能
|
有
|
有
|
動(dòng)物操作
|
氣體麻醉
|
有
|
有
|
加熱平臺(tái)
|
25℃-45℃
|
25℃-45℃
|
成像室尺寸
|
25×26×38cm(W×D×H)
|
50×40×70cm(W×D×H)
|
模塊
|
動(dòng)態(tài)成像
|
有
|
有
|
同時(shí)多角度觀察
|
有
|
有
|
3D重建軟件
|
無(wú)
|
有
|
2D X射線分析和定位
|
無(wú)
|
有
|
In Actio分析和定位
|
有
|
有
|
系統(tǒng)要求
|
操作系統(tǒng)
|
Windows XP/7
|
Windows XP/7
|
電源
|
1KW 150或230V
|
1KW 150或230V
|
尺寸
|
60×75×105cm(W×D×H)
|
60×85×140cm(W×D×H)
|
重量
|
85kg
|
140kg
|
Biospace Lab 前身為Biospace measures 公司,由諾貝爾物理學(xué)獎(jiǎng)得者喬治夏帕克教授根據(jù)其在高能物理和粒子檢測(cè)方面的研究發(fā)現(xiàn),于1989年組建成立。喬治夏帕克教授及其團(tuán)隊(duì)**于生物影像工具的研究開(kāi)發(fā)。公司成立以來(lái),積*與醫(yī)學(xué)、藥學(xué)和其它領(lǐng)域的科研機(jī)構(gòu)合作,力求滿足用戶對(duì)生物醫(yī)學(xué)影像儀器的實(shí)際需求。目前,Biospace Lab已經(jīng)發(fā)展了多種用于小型動(dòng)物成像儀器,并擁有自己的**技術(shù)。
Biospace Lsb**于高性能臨床前實(shí)驗(yàn)影像儀器的研制,成功開(kāi)發(fā)出用于小型動(dòng)物體內(nèi)、體外和活動(dòng)動(dòng)態(tài)成像的成像系統(tǒng)。目前,該成像系統(tǒng)已經(jīng)在世界知名**公司和權(quán)威研究中心投入使用。
Biospace Lab的研發(fā)和生產(chǎn)總部位于法國(guó)巴黎,在歐洲、北美和亞洲均設(shè)有分公司。所有產(chǎn)品,包括其設(shè)計(jì)、生產(chǎn)、銷售、安裝和售后服務(wù)均符合ISO9001:2000認(rèn)證規(guī)范。
Biospace Lab光學(xué)活體成像工作原理:

使用Intensified CCD成像,即在原來(lái)CCD的基礎(chǔ)上裝上增強(qiáng)光信號(hào)的信號(hào)增強(qiáng)管。該裝置包括:光電陰*、微通道板(microchannel plate)和熒光屏。
光源通過(guò)物鏡聚焦后投射到光電陰*,因?yàn)楣怆娦?yīng),投射到光電陰*的光子轉(zhuǎn)變?yōu)殡娮?,讓該電子通過(guò)一個(gè)強(qiáng)電場(chǎng),使電子通過(guò)MCP后變成攜帶高能量的電子云,這些電子云投射到熒光屏便形成肉眼可見(jiàn)的光斑。這樣,ICCD就能輕易捕捉到單一光子成像。
如右圖所示。
Biospace Lab光學(xué)活體成像優(yōu)點(diǎn):
● 使用ICCD成像,有效提高信噪比,消除噪音對(duì)結(jié)果的干擾,在Photon成像系統(tǒng)中,相機(jī)的噪音減少到7 x 10-5 e-/像素 or或35 e-/s/cm2
● 對(duì)實(shí)驗(yàn)動(dòng)物進(jìn)行實(shí)時(shí)觀察,全界面清晰成像,無(wú)需理會(huì)光圈、焦距的使用,不必摸索拍攝曝光時(shí)間,結(jié)果肉眼隨時(shí)可視,所得的數(shù)據(jù)更加真實(shí)可信。
● 擁有Biospace Lab**數(shù)據(jù)成像模型:Enhanced Counting Mode,使該系統(tǒng)動(dòng)態(tài)檢測(cè)范圍靈敏度提高到5個(gè)數(shù)量級(jí),達(dá)50 000 光子/s/mm2.
● 利用系統(tǒng)兼容軟件M3Vision進(jìn)行全自動(dòng)數(shù)據(jù)分析
世聯(lián)博研北京科技有限公司代理BiospaceLab的產(chǎn)品一共有五種:
The Photon Imager;
The Micro Imager;
The Beta Imager;
The Gamma Imager;
Beta MicroProbe。
詳情請(qǐng)致電世聯(lián)博研北京科技有限公司國(guó)內(nèi)免費(fèi)客服專線:400-650-8506
除了覆蓋一般要求的冷光及熒光成像外,BiospaceLab還有更**的放射性同位素成像和微探針系統(tǒng),這在目前是暫時(shí)沒(méi)有競(jìng)爭(zhēng)對(duì)手的。
特點(diǎn):采用第3代ICCD系統(tǒng)可將*微弱的電場(chǎng)信號(hào)放大100萬(wàn)倍,而背景值比傳統(tǒng)冷CCD低100~1000倍,這是技術(shù)優(yōu)勢(shì)所在。
系統(tǒng)只要加入模塊,無(wú)需改變結(jié)構(gòu),就可以增強(qiáng)或改進(jìn)成像系統(tǒng)的功能,可根據(jù)實(shí)驗(yàn)情況逐步升級(jí),讓能效比*大化.升級(jí)潛力大,同時(shí)亦延長(zhǎng)了儀器的折舊報(bào)廢周期,讓您的投資物有所值.
APPLICATION NOTES
PhotonIMAGER systems
|
|
Cerenkov Luminescence imaging on the PhotonIMAGER? system -
biodistribution of the beta emitting radiotracer 32P
Cerenkov imaging is shown to be a valid tool for complementing more commonly used BLI, FLI, SPECT and PET imaging modalities. This study successfully demonstrated how visualization of tumor onset/progression can be achieved by detecting Cerenkov luminescence from injected 32P radiolabel. The PhotonIMAGER? system is shown to be perfectly adapted to monitor Cerenkov Luminescence in vivo.
Download pdf
|
|
The importance of Real-Time acquisition for identifying the signal plateau in bioluminescent in vivo imaging
The emission of light following the reaction between Luciferase and it’s substrate Luciferin is the result of an enzymic reaction. The signal dynamics following following Luciferin injection in vivo will therefore be strongly dependant upon many factors; including temperature, pH, and location of Luciferase-expressing cells in vivo. This application note demonstrates the advantages of Real-Time signal acquisition for in vivo optical imaging.
Dowload pdf
|
|
Macrolens Module: detecting metastasis in mouse lung
It has been demonstrated in this study that it is possible to resolve metastasis in the lung ex vivo at higher magnification, even when they cannot be resolved in vivo during whole body imaging.
The Macrolens module also allows precise localization of closely spaced signals making it possible to reliably quantify each one.
Download pdf
|
|
Real -Time monitoring of luminescent nanoprobe biodistribution
The biodistribution of luminescent nanoparticles can be controlled by altering their chemical surface and electrical charge. They can then be monitored in Real-Time using the PhotonIMAGER. This is of particular interest for pharmacological applications.
Download pdf
|
|
In Actio Module: Real-Time bioluminescence imaging in freely moving small animals
This study demonstrates the performance of a device developed for whole body imaging of small moving animals at high time resolution. The system comprises a camera for photon counting of bioluminescence signal and a video monitoring function to track the animals movements. The In Actio Module allows Bioluminescence imaging where anesthetics are suspected to cause physiological interference, such as studies monitoring tumor growth.
Download pdf
|
|
PhotonIMAGER?4-view module:
A device for simultaneous view of all the sides of animal body
The 4-View module is a device dedicated to the whole body imaging. Using thismodule reduces time needed to visualize allthe signals. This tool allows both bioluminescence and fluorescentimaging in real time. With this module problems which might appear due topositioning of the signal in the animal find their solution. The 4-View moduleis especially useful when signal appears on lateral sides and is not alwaysclearly visible with the standard module.
Download pdf
|
|
Leishmania Infantum infection monitoring by bioluminescence
This study shows that Bioluminescence imaging allows to obtain as much information as standard in vitro techniques concerning the evaluation of the parasite charge. Moreover, the PhotonIMAGER is well indicated for longterm monitoring of parasites plague without sacrificing the animals.
Download pdf
|
Marteau et al, 2013, Angiopoietin-2 is vasoprotective in the acute phase of cerebral ischemia
|
Abstract
|
|
Chen et al, 2013, RANGE: Gene Transfer of Reversibly Controlled Polycistronic Genes
|
Abstract
|
|
Lord et al, 2013, Comparison of the ex vivo receptor occupancy of ketamine to several NMDA receptor antagonists in mouse hippocampus
|
Abstract
|
|
Feyen et al, 2013 Increasing short-term cardiomyocyte progenitor cell (CMPC) survival by necrostatin-1 did not further preserve cardiac function
|
Abstract
|
|
Lian et al, 2013, Effects of olanzapine and betahistine co-treatment on serotonin transporter, 5-HT2A and dopamine D2 receptor binding density
|
Abstract
|
|
Harde et al 2013, Disease-based selection of nanocarriers in drug delivery based on hydrophobicity and surface charge
|
Abstract
|
|
Serna et al, 2013 Profiling Glycosyltransferase Activities by Tritium Imaging of Glycan Microarrays
|
Abstract
|
|
Lipani et al, 2013 High-Relaxivity and Luminescent Silica Nanoparticles As Multimodal Agents for Molecular Imaging
|
Abstract
|
|
Gulaldi et al 2013, Modeling of the Renal Kinetics of the AT1 Receptor Specific PET Radioligand [11C]KR31173
|
Abstract
|
|
Maldiney et al 2013, In vivo imaging with persistent luminescence silicate-based nanoparticles
|
Abstract
|
|
Rettenbacher et al, 2013, Corticosterone metabolism by chicken follicle cells does not affect ovarian reproductive hormone synthesis in vitro
|
Abstract
|
|
Ping et al, 2013, FGFR-targeted gene delivery mediated by supramolecular assembly between b-cyclodextrin-crosslinked PEI and redox-sensitive PEG
|
Abstract
|
|
Randelli et al 2013, Isolation and Characterization of 2 New Human Rotator Cuff and Long Head of Biceps Tendon Cells Possessing Stem Cell -Like Self-Renewal and Multipotential Differentiation Capacity
|
Abstract
|
|
Hombach et al 2013, Adoptive Immunotherapy with Redirected T Cells ProducesCCR7- Cells That Are Trapped in the Periphery and Benefit from Combined CD28-OX40 Costimulation
|
Abstract
|
|
Jensen et al 2013, Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: Evidence for direct 5-HT receptor modulation
|
Abstract
|
|
Zelko et al 2013, A bioluminescent transgenic mouse model: Real-time in vivo imaging of antioxidant EC-SOD gene expression and regulation by interferon gamma
|
Abstract
|
|
Malleter et al, 2013, CD95L cell surface cleaevage trigers a pro-methastatic signaling pathway in triple negative breast cancer.
|
Abstract
|
|
Young et al, 2013, An MRAS, SHOC2, and SCRIB Complex Coordinates ERK Pathway Activation with Polarity and Tumorigenic Growth
|
|
|