欧美亚洲日韩在线娱乐论坛,欧美亚洲国产一区二区三区,欧美日韩在线一区二区三区,欧美日韩一区二区三区人妻

世聯(lián)博研(北京)科技有限公司 主營(yíng):Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷售技術(shù)服務(wù): 美國(guó)Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測(cè)試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國(guó)cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測(cè)試分析、aresis多點(diǎn)力學(xué)測(cè)試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測(cè)試分析系統(tǒng)
服務(wù)電話: 010-67529703
主營(yíng)產(chǎn)品: Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷售技術(shù)服務(wù): 美國(guó)Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測(cè)試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國(guó)cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測(cè)試分析、aresis多點(diǎn)力學(xué)測(cè)試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測(cè)試分析系統(tǒng)
聯(lián)系我們

微流控三維凝膠培養(yǎng)芯片系統(tǒng),微流體三維凝膠培養(yǎng)芯片系統(tǒng)

  • 如果您對(duì)該產(chǎn)品感興趣的話,可以
  • 產(chǎn)品名稱:微流控三維凝膠培養(yǎng)芯片系統(tǒng),微流體三維凝膠培養(yǎng)芯片系統(tǒng)
  • 產(chǎn)品型號(hào):Flexcell?Chipmate Kits
  • 產(chǎn)品展商:AIM Biotech
  • 產(chǎn)品文檔:無(wú)相關(guān)文檔
簡(jiǎn)單介紹

AIM Biotech公司的3D細(xì)胞培養(yǎng)是一種多用途的實(shí)驗(yàn)平臺(tái),已在多種生物學(xué)研究中得到了應(yīng)用。 1、AIM Biotech 3D細(xì)胞培養(yǎng)芯片采用三通道設(shè)計(jì),中間為3D凝膠通道,兩側(cè)為培養(yǎng)基通道,通過(guò)負(fù)壓吸引快速交換培養(yǎng)基。 2、芯片透氣性好,可有效進(jìn)**體交換 3采用標(biāo)準(zhǔn)載玻片尺寸(75 mm × 25 mm),兼容相差顯微鏡、熒光顯微鏡和激光共聚焦顯微鏡 4可實(shí)現(xiàn)不同類型細(xì)胞的共培養(yǎng)

產(chǎn)品描述


Flexcell®Chipmate Kits


 

系統(tǒng)簡(jiǎn)介:

AIM BIOTECH是新加坡一家專注于**性工具研發(fā)的創(chuàng)業(yè)型公司,其應(yīng)用領(lǐng)域涵蓋科學(xué)研究、**開(kāi)發(fā)和臨床診斷范疇。

AIM BIOTEC為科研市場(chǎng)做出的**份貢獻(xiàn)是開(kāi)發(fā)出一款易于操作的、模塊化的平臺(tái),

該平臺(tái)成功地將3D細(xì)胞培養(yǎng)納入了科研人員研究工作體系之中。 
AIM BIOTECH 3D細(xì)胞培養(yǎng)芯片概述 
AIM的3D細(xì)胞培養(yǎng)芯片透氣性好,而且用戶可以通過(guò)選擇不同的水凝膠,在間隔的3D和2D空間進(jìn)行不同類型細(xì)胞的培養(yǎng)。

同時(shí)可以通過(guò)對(duì)化學(xué)物濃度梯度和流體的調(diào)控很好地模擬符合用戶特定需求的微環(huán)境。


AIM Biotech公司的3D細(xì)胞培養(yǎng)是一種多用途的實(shí)驗(yàn)平臺(tái),已在多種生物學(xué)研究中得到了應(yīng)用。

1、AIM Biotech 3D細(xì)胞培養(yǎng)芯片采用三通道設(shè)計(jì),中間為3D凝膠通道,兩側(cè)為培養(yǎng)基通道,通過(guò)負(fù)壓吸引快速交換培養(yǎng)基。

2、芯片透氣性好,可有效進(jìn)**體交換

3、采用標(biāo)準(zhǔn)載玻片尺寸(75 mm × 25 mm),兼容相差顯微鏡、熒光顯微鏡和激光共聚焦顯微鏡

4、可實(shí)現(xiàn)不同類型細(xì)胞的共培養(yǎng)

5、可在3D凝膠兩側(cè)產(chǎn)生化學(xué)梯度,也可控制3D凝膠中的間質(zhì)流

6、配備Flexcell®公司的Collagel®和Thermacol®凝膠試劑盒




Type I collagen gel kit for creating bioartificial tissue engineered constructs (see Fig. 1 below).

  • All components in one kit for creating a 3D cell-seeded bioartificial type I collagen gel.
  • Reproducible formation of homogenous collagen gels.
  • Multiple applications including tissue engineering, migration studies, differentiation, chemotaxis, cell interactions, & matrix interactions.
  • Kit contains type I collagen, 5X MEM, fetal bovine serum, 1 M hepes, and 0.1 M NaOH.
  • Available in three sizes: mini, midi*, and maxi*.




圖1 AIM biotech 3D細(xì)胞培養(yǎng)系統(tǒng)。

 

應(yīng)用:

1、(非)貼壁細(xì)胞的遷移和浸潤(rùn)

2、血管發(fā)生和生成

3、腫瘤細(xì)胞轉(zhuǎn)移

4、神經(jīng)干細(xì)胞分化




圖2芯片結(jié)構(gòu)及用途。芯片中間為3D凝膠通道,兩側(cè)為培養(yǎng)基通道(A)。芯片可用于細(xì)胞遷移(B),間質(zhì)流、細(xì)胞共培養(yǎng)和細(xì)胞遷移(B,C)等實(shí)驗(yàn)以及控制化學(xué)梯度(D)和間質(zhì)流(E)的形成。


 

 
 

 
 
 

配套的流體控制泵

Flexcell®HiQFlowmate®流體控制系統(tǒng)可在微升至皮升水平上控制流體,實(shí)現(xiàn)恒定型、連續(xù)型、截流型、震蕩型和脈動(dòng)型流動(dòng),與FlexFlow®平板流動(dòng)腔連用可對(duì)細(xì)胞施加不同形式的流體剪切力。


圖1HiQFlowmate®流體控制系統(tǒng)

 

系統(tǒng)特點(diǎn):

1、雙注射器流體驅(qū)動(dòng)系統(tǒng),流量范圍大,可**控制流量

2、高分辨率觸屏,可計(jì)算劑量、運(yùn)行時(shí)間、流量和切應(yīng)力

3、用戶友好的圖形編程界面,可同時(shí)實(shí)現(xiàn)不同的流型

  • HiQ Flowmate納升和微微液流控制雙注射系統(tǒng)


  • 雙注射泵可以在微升,納升和微微升水平上控制液流.雙注射泵,獨(dú)立的液流控制系統(tǒng)。

  • 傳送**,穩(wěn)定的流速

  • 可控流速范圍1.2pL/ min-260.6ml/min

  • 提供不同流速模型:穩(wěn)定型,脈沖型,連續(xù)型,截流型和震蕩型;

  • 可進(jìn)行循環(huán),連續(xù)的液流控制;同時(shí)運(yùn)行不同的流速模型;

  • 內(nèi)置閥門控制液流模式;

  • 機(jī)載計(jì)算器用于流量、流時(shí)、流速、剪切力的計(jì)算;

  • 高分辨率、觸屏控制。

  • 用戶友好的圖標(biāo)驅(qū)動(dòng)程序;

  • 便于泵和芯片對(duì)接的生物芯片支架;根據(jù)現(xiàn)有流速有三種不同的機(jī)型;

    多種應(yīng)用程序:


  • 液體稀釋,配給及注射器;

  • 動(dòng)物實(shí)驗(yàn)中的**注射和體液抽??;

  • 施加液流剪切力;

  • 微流體和納流體實(shí)驗(yàn);

  • 混合、分流液體;

  • 震蕩型液流的控制需要iHIQ Flowmate二級(jí)閥門配件


英文介紹:



Flexcell® Chipmate Kits 



Run multiple assays, including cell migration, co-culture, cell invasion, and angiogenesis, all at the microfluidic level using AIM Biotech 3D cell culture chips and Flexcell® kits for creating type I collgen gels.

Chipmate kits come in various sizes and with different components to help users get the most out of each kit in their research experiments.
Kits are available with one of the following components:
  • AIM Biotech's 3D Cell Culture Chip with a central hydrogel channel flanked by two media channels (see Fig. 1). Learn more here. 
  • Flexcell® Thermacol®/Collagel® Kits for creating 3D type I collagen hydrogels. Learn more here. 
  • Flexcell® HiQ Flowmate® Dual Syringe Pump with independent fluid drive system capable of constant steady, pulsatile, continuous, and oscillating flow modes. Learn more here. 
  • AIM Biotech Microtiter Plate Holder with cover. Each holder holds up to three AIM Biotech chips. Click here for the product information sheet. 
  • AIM Biotech Luer Connectors for modular expansion. Click here for the product information sheet. 
Chipmate
Figure 1: Close-up of the AIM Biotech 3D Cell Culture Chip with the central hydrogel channel and two media channels. The chip can be used for multiple assays including instersitial fluid flow, co-culture, and cell migration.


應(yīng)用文獻(xiàn):


Key publications

  1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm RD.  Lab Chip, 2008, 8, 1468-1477.
  2. Cell migration into scaffold under co-culture conditions in a microfluidic platform. Chung S, Sudo S, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Lab Chip, 2009, 9(2):269-75.
  3. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD and Chung S.  Nature Prot, 7(7):1247-1259, 2012, PMID: 22678430
  4. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD.  Integr Biol (Camb). 2012 Jun 7. PMID 22722695
  5. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD.   Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13515-20. Epub 2012 Aug 6. PMID: 22869695
  6. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, Sim W-J, Zervantonakis IK, Thiery JP, Kamm RD.  Integr Biol (Camb). 2013 Feb;5(2):381-9. doi: 10.1039/c2ib20209c PMID: 23172153 
  7. Mechanotransduction of fluid stresses governs 3D rheotaxis. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD.  Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2447-52. doi: 10.1073/pnas.1316848111. Epub 2014 Feb 3. PMID: 24550267
  8. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD.  Proceedings of the National Academy of Sciences, pp. 201417115, 2014

Publications

  1. A microfluidic platform for studying the effects of small temperature gradients in incubator environment. Das SK, Chung S, Zervantonakis I, Atnafu J, Kamm RD. Biomicrofluidics, 2008, 2, 03106.
  2. Transport-mediated angiogenesis in 3D epithelial coculture. Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD.  FASEB J, 2009, 23(7):2155-64.
  3. Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. Chung S, Sudo R, Zervantonakis I, Rimchala T, Kamm RD.  Adv Mat,Dec 18;21(47):4863-7. doi: 10.1002/adma.200901727.
  4. Concentration gradients in microfluidic 3D matrix cell culture systems. Zervantonakis IK, Chung S, Sudo R, Zhang M, Charest JL, Kamm RD. Intern J Micro-Nano Scale Transport, 1(1): 27-36, 2010.
  5. Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Chung S, Sudo S, Vickerman V, Zervantonakis IK, Kamm RD.  Annals Biomed Engineering, 2010, DOI: 10.1007/s10439-010-9899-3.
  6. Determining cell fate transition probabilities to VEGF/Ang 1 levels: Relating computational modeling to microfluidic angiogenesis studies. Das A, Lauffenburger DA, Asada HH, Kamm RD.  Cellular and Molecular Bioengineering. 2010 Dec; 3(4):345-360.
  7. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD.  Lab Chip. 2011 Feb 7; 11 (3) :497-507. PMID:21107471.
  8. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD.  Biomicrofluidics. 2011 Mar 30; 5(1):13406. PMID:21522496.
  9. Hot embossing for fabrication of a microfluidic 3D cell culture platform. Jeon JS, Chung S, Kamm RD, Charest JL. Biomed Microdevices. 2011 Apr; 13(2):325-33. PMID:21113663; PMC3117225.
  10. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Polacheck WJ, Charest JL, Kamm RD. Proc Natl Acad Sci U S A. 2011 Jul 5; 108 (27):11115-20. PMID:21690404; PMCID: PMC3131352.
  11. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Shin Y, Jeon JS, Han S, Jung GS, Shin S, Lee SH, Sudo R, Kamm RD, Chung S.  Lab Chip. 2011 Jul 7; 11 (13) :2175-81. PMID:21617793.
  12. Sprouting angiogenesis under a chemical gradient regulated by interaction with endothelial monolayer in microfluidic platform. Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S.  Anal Chem. Epub 2011 Oct 10. PMID: 21985643.
  13. Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures. Farahat WA, Wood LB, Zervantonakis IK, Schor A, Ong S, Neal D, Kamm RD, Asada H.  PLoS One, 7(5), 2012. PMID: 22662145
  14. In vitro angiogenesis assay for the study of cell encapsulation therapy. Choong Kim, Seok Chung, Liu Yuchun, Min-Cheol Kim Jerry K. Y. Chan, H. Harry Asada and Roger D. Kamm.  Lab Chip, 2012, DOI:10.1039/C2LC40182G PMID: 22722695
  15. A Novel Microfluidic Platform for High-Resolution Imaging of a Three-Dimensional Cell Culture under a Controlled Hypoxic Environment. Funamoto K, Zervantonakis IK, Liu Y, Ochs CJ, Kim C, Kamm RD.   Lab Chip, Nov 21;12(22):4855-63. doi: 10.1039/c2lc40306d. 
  16. A microfluidic device to investigate axon targeting by limited numbers of purified cortical projection neuron subtypes. Tharin S, Kothapali CR, Ozdinler PH, Pasquina L, Chung S, Varner J, DeValance S, Kamm R, Macklis JD.  Integr Biol, 4, 1398-1405, 2012, DOI: 10.1039/c2ib20019h
  17. Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting. Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD.  PLoS ONE, 2012;7(12):e50582. doi: 10.1371/journal.pone.0050582. PMID: 23226527
  18. Extracellular Matrix Heterogeneity Regulates Three-Dimensional Morphologies of Breast Adenocarcinoma Cell Invasion. Shin Y, Kim H, Han S, Won J, Lee E-S, Kamm RD, Kim J-H, Chung S.  Adv Healthc Mater. 2013 Jun;2(6):790-4. doi: 10.1002/adhm.201200320. Epub 2012 Nov 26. PMID: 23184641
  19. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE, Kamm RD, Kim YJ, Chung S. Lab Chip. 2012 Oct 21;12(20):3861-5. PMID: 22903230
  20. A Three-Dimensional Microfluidic Tumor Cell Migration Assay to Screen the Effect of Anti-Migratory Drugs and Interstitial Flow. Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T, Kamm RD, Tanishita K, Sudo R.  Microfluid Nanofluid, 2012,  DOI 10.1007/s10404-012-1104-6
  21. In vitro model of tumor cell extravasation. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. PLoS One. 2013;8(2):e56910. doi: 10.1371/journal.pone.0056910. Epub 2013 Feb 20. PMID: 23437268
  22. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Chen MB, Whisler JA, Jeon JS, Kamm RD. Integr Biol (Camb). 2013 Sep 23; 5(10):1262-71. doi: 10.1039/c3ib40149a. PMID: 23995847
  23. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. Lim SH, Kim C, Aref AR, Kamm RD, Raghunath M.  Integr Biol (Camb), 2013, DOI: 10.1039/c3ib40082d.
  24. Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System. Whisler JA, Chen MB, Kamm RD. Tissue Eng Part C Methods. 2014 Jul;20(7):543-52. doi: 10.1089/ten.TEC.2013.0370. Epub 2013 Dec 13. PMID: 24151838
  25. In vitro models of the metastatic cascade: from local invasion to extravasation. Bersini S, Jeon JS, Moretti M, Kamm RD.  Drug Discov Today. 2013 Dec 17. pii: S1359-6446(13)00424-8. doi: 10.1016/j.drudis.2013.12.006. [Epub ahead of print] PMID: 24361339
  26. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Bersini S, Jeon JS, Dubini G, Arrigoni C, Charest JL, Moretti M, Kamm RD. Biomaterials. 2014 Mar;35(8):2454-61. doi: 10.1016/j.biomaterials.2013.11.050. Epub 2013 Dec 31. PMID: 24388382
  27. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment. Niu Y, Bai J, Kamm RD, Wang Y, Wang C.  Mol Pharm. 2014 Jul 7;11(7):2022-9. doi: 10.1021/mp500054h. Epub 2014 Feb 24. PMID: 24533867 
  28. In Vitro Microvessel Growth and Remodeling within a Three-dimensional Microfluidic Environment. Park YK, Tu TY, Lim SH, Clement IJM, Yang SY, Roger D. Kamm RD.  Cell Mol Bioeng. 2014 Mar 1;7(1):15-25. PMID: 24660039 
  29. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, Moody SE, Shen RR, Schinzel AC, Thai TC, Reibel JB, Tamayo P, Godfrey JT, Qian ZR, Page AN, Maciag K, Chan EM, Silkworth W, Labowsky MT, Rozhansky L, Mesirov JP, Gillanders WE, Ogino S, Hacohen N, Gaudet S, Eck MJ, Engelman JA, Corcoran RB, Wong KK, Hahn WC, Barbie DA. Cancer Discov. 2014 Apr;4(4):452-65. doi: 10.1158/2159-8290.CD-13-0646. Epub 2014 Jan 20.
  30. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD.  Integr Biol (Camb). 2014 May;6(5):555-63. doi: 10.1039/c3ib40267c. PMID: 24676392
  31. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells. Belair DG, Whisler JA, Valdez J, Velazquez J, Molenda JA, Vickerman V, Lewis R, Daigh C, Hansen TD, Mann DA, Thomson JA, Griffith LG, Kamm RD, Schwartz MP, Murphy WL.  Stem Cell Rev. 2014 Jun;11(3):511-25 doi: 10.1007/s12015-014-9549-5 PMID: 25190668
  32. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, Imamura Y, Thai TC, Huang Y, Bowden M, Herndon J, Cohoon TJ, Fleming T, Tamayo P, Mesirov JP, Ogino S, Wong KK, Ellis MJ, Hahn WC, Barbie DA, Gillanders WE.  J Clin Invest. 2014 Dec;124(12):5411-23. doi: 10.1172/JCI75661. Epub 2014 Nov 3.
  33. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Tan L, Wang J, Tanizaki J, Huang Z, Aref AR, Rusan M, Zhu SJ, Zhang Y Ercan D, Liao RG, Capelletti M, Zhou W, Hur W, Kim N, Sim T, Gaudet S, Barbie DA, Yeh JR, Yun CH, Hammerman PS, Mohammadi M, J?nne PA, Gray NS. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4869-77. doi: 10.1073/pnas.1403438111. Epub 2014 Oct 27.
  34. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Kim C, Kasuya J, Jeon J, Chung S, Kamm. Lab Chip. 2014 Dec 3;15(1):301-10. doi: 10.1039/c4lc00866a. PMID: 25370780
  35. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Bai J, Adriani G, Dang TM, Tu TY, Penny HL, Wong SC, Kamm RD, Thiery JP.  Oncotarget 6 (28), 25295-25307, 2015
  36. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. J Bai, TY Tu, C Kim, JP Thiery, RD Kamm.  Oncotarget, 2015 Nov 3;6(34):36603-14. doi: 10.18632/oncotarget.5464.
  37. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. Uzel SG, Amadi OC, Pearl TM, Lee RT, So PT, Kamm RD. Small. 2016 Feb;12(5):688. doi: 10.1002/smll.201670025.
  38. Constructive remodeling of a synthetic endothelial extracellular matrix. Han S, Shin Y, Jeong JS, Kamm RD, Huh D, Sohn LL, Chung S.  ScI Rep. 2015 Dec 21;5:18290. doi: 10.1038/srep18290.
  39. Microfluidics: A New Tool for Modeling Cancer–Immune Interactions. Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD.  Trends in Cancer, Volume 2, Issue 1, p6–19, January 2016.





產(chǎn)品留言
標(biāo)題
聯(lián)系人
聯(lián)系電話
內(nèi)容
驗(yàn)證碼
點(diǎn)擊換一張
注:1.可以使用快捷鍵Alt+S或Ctrl+Enter發(fā)送信息!
2.如有必要,請(qǐng)您留下您的詳細(xì)聯(lián)系方式!
Copyright@ 2003-2025  世聯(lián)博研(北京)科技有限公司版權(quán)所有      電話:13466675923 傳真: 地址:北京市海淀區(qū)西三旗上奧世紀(jì)中心A座9層906 郵編:100096

资源县| 余干县| 湖南省| 大洼县| 吉水县| 衡阳市| 潞西市| 砚山县| 富源县| 黑龙江省| 周口市| 远安县| 孝义市| 崇信县| 沙田区| 濮阳市| 会宁县| 酒泉市| 中西区| 辽宁省| 义马市| 即墨市| 郴州市| 剑川县| 布尔津县| 清徐县| 兰西县| 海宁市| 全椒县| 天长市| 垣曲县| 普兰店市| 梁山县| 平果县| 南川市| 开平市| 南宁市| 安义县| 阿巴嘎旗| 乌审旗| 时尚|