欧美亚洲日韩在线娱乐论坛,欧美亚洲国产一区二区三区,欧美日韩在线一区二区三区,欧美日韩一区二区三区人妻

世聯(lián)博研(北京)科技有限公司 主營:Flexcell細胞力學(xué)和regenhu細胞3D生物打印機銷售技術(shù)服務(wù): 美國Flexcell品牌FX-5000T細胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細胞組織培養(yǎng)與測試系統(tǒng),F(xiàn)X-5000C三維細胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國cellastix品牌Optical Stretcher高通量單細胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細胞友好型3D生物打印機,piuma細胞納米壓痕測試分析、aresis多點力學(xué)測試光鑷,MagneTherm細胞腫瘤電磁熱療測試分析系統(tǒng)
服務(wù)電話: 010-67529703
主營產(chǎn)品: Flexcell細胞力學(xué)和regenhu細胞3D生物打印機銷售技術(shù)服務(wù): 美國Flexcell品牌FX-5000T細胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細胞組織培養(yǎng)與測試系統(tǒng),F(xiàn)X-5000C三維細胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國cellastix品牌Optical Stretcher高通量單細胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細胞友好型3D生物打印機,piuma細胞納米壓痕測試分析、aresis多點力學(xué)測試光鑷,MagneTherm細胞腫瘤電磁熱療測試分析系統(tǒng)
聯(lián)系我們

便攜式無標記細胞檢測酶標儀,新一代無標記細胞分析酶標儀

  • 如果您對該產(chǎn)品感興趣的話,可以
  • 產(chǎn)品名稱:便攜式無標記細胞檢測酶標儀,新一代無標記細胞分析酶標儀
  • 產(chǎn)品型號:LYTE96
  • 產(chǎn)品展商:Byosens GmbH
  • 產(chǎn)品文檔:無相關(guān)文檔
簡單介紹

BYOSENS LYTE96 THE FIRST PORTABLE LABEL-FREE MICROPLATE READER! yte96無標記便攜生物傳感器是基于康寧Epic系統(tǒng)設(shè)計的,可進行一系列細胞內(nèi)試驗的96孔微孔板讀出設(shè)備。lyte96將無線連接和集成電池結(jié)合放置到一個緊湊的結(jié)構(gòu)中,使得它方便移動和易于整合進液體處理系統(tǒng)。主要是對系列廣泛的生物反應(yīng)進行檢測,如信號轉(zhuǎn)導(dǎo)、細胞凋亡、細胞毒

產(chǎn)品描述

BYOSENS LYTE96**臺便攜式無標記酶標儀(便攜微孔板檢測器)

 

lyte96無標記便攜生物傳感器系統(tǒng)介紹

 

lyte96無標記便攜生物傳感器是基于康寧Epic系統(tǒng)設(shè)計的,可進行一系列細胞內(nèi)試驗的96孔微孔板讀出設(shè)備。lyte96將無線連接和集成電池結(jié)合放置到一個緊湊的結(jié)構(gòu)中,使得它方便移動和易于整合進液體處理系統(tǒng)。主要是對系列廣泛的生物反應(yīng)進行檢測,如信號轉(zhuǎn)導(dǎo)、細胞凋亡、細胞**,貼壁、增殖和擴散等。

lyte96無標記便攜生物傳感器的工作原理是基于折射波導(dǎo)光柵光學(xué)生物傳感器。傳感器結(jié)構(gòu)由一個三層系統(tǒng):玻璃基板、薄膜光波導(dǎo)薄膜與光柵結(jié)構(gòu),和細胞/生物分子層。當寬譜帶光照射時,生物傳感器反映光的特定波長是接近傳感器表面折射率的靈敏函數(shù)。通過 Epic系統(tǒng)測量細胞內(nèi)的粘合物事件或細胞內(nèi)蛋白質(zhì)運動引起反射光的波長偏移。形成一系列波長偏移、波長、強度、時間之間的函數(shù)來進行分析。

lyte96無標記便攜生物傳感器的優(yōu)勢:

移動性: lyte96**設(shè)計之處是給使用者帶來了*大的靈活性。緊湊的結(jié)構(gòu)結(jié)合了無線連接和集成的電池使lyte96方便移動。這使得它對于研究人員和開發(fā)人員來說成為一個**的分析工具。

易用性: lyte96簡化了研發(fā)實驗室中的過程。實驗開始時不需要復(fù)雜的預(yù)置,直觀輔助的軟件保證了高水平的易用性。由于**技術(shù)體系,lyte96幾乎是免費維護。

數(shù)據(jù)分析:根據(jù)已建立的康寧Epic系統(tǒng),高敏性的lyte96可進行寬光譜的細胞內(nèi)試驗,從開始試驗到幾天的時間都可以提供實時數(shù)據(jù)以便研究。 

 

1. 萊特96無標記便攜生物傳感器

 

 

2.測量原理示意圖

 

1:在增殖試驗中,用lyte96實時監(jiān)測細胞數(shù)量,發(fā)現(xiàn)細胞數(shù)目和傳感器表面的質(zhì)量是成正比的。微孔板和lyte96放置在加濕的培養(yǎng)箱內(nèi)通過藍牙無線連接電腦。經(jīng)典增殖試驗中,A431細胞加入到孔中,記錄37?C的細胞生長。

 

2:動態(tài)質(zhì)量再分配(DMR)的測定

像許多其他的信號檢測,GPCR測定動態(tài)質(zhì)量再分配過程中(DMR)是由lyte96無標記傳感器測定的。和A431細胞緩激肽試驗一樣,這個試驗是在室溫下進行。得到的EC500.45 nm,這類似于從文獻的結(jié)果

參考文獻:

2016

Nazirizadeh, Y. et al. Intensity interrogation near cutoff resonance for label-free cellular profiling. Sci. Rep. 6, 24685 (2016).

 

French, J. B. et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733 (2016).

 

Camp, N. D. et al. Dynamic mass redistribution reveals diverging importance of PDZ-ligands for G protein-coupled receptor pharmacodynamics. Pharmacological. Research, 105, 13-21 (2016).

 

Klein, A. B., Nittegaard-Nielsen, M., Christensen, J. T., Al-Khawaja, A., & Wellendorph, P. Demonstration of the dynamic mass redistribution label-free technology as a useful cell-based pharmacological assay for endogenously expressed GABAA receptors. Med. Chem. Commun., 7, 426–432 (2016).

 

Klepac, K. et al. The Gq signalling pathway inhibits brown and beige adipose tissue. Nat. Commun. 7, 10895 (2016).

 

2015

Hamamoto, A., Kobayashi, Y. & Saito, Y. Identification of amino acids that are selectively involved in Gi/o activation by rat melanin-concentrating hormone receptor 1. Cell. Signal. 27, 818–827 (2015).

 

Navarro, G. et al. Orexin – Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine. J. Neurosci. 35, 6639–6653 (2015).

 

Wang, J. et al. RSC Advances danshen using a label-free cell phenotypic assay. RSC Adv. 5, 25768–25776 (2015).

 

Rex, E. B. et al. Phenotypic Approaches to Identify Inhibitors of B Cell Activation. J. Biomol. Screen. 20, 876–886 (2015).

 

Vinals, X. et al. Cognitive Impairment Induced by Delta9- tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB 1 and Serotonin 5-HT 2A Receptors. PLOS Biol., e1002194 (2015).

 

Fjellstr?m, O. et al. Novel Zn 2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents. PLoS One, 0145849 (2015).

 

Shridhar, N. et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 6, 10156 (2015).

 

Marada, S. et al. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling. PLOS Genet., 1005473 (2015).

 

Brust, T. F., Hayes, M. P., Roman, D. L. & Watts, V. J. New functional activity of aripiprazole revealed: robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling. Biochem Pharmacol. 93, 85–91 (2015).

 

Camp, N. D. et al. Individual protomers of a G protein-coupled receptor dimer integrate distinct functional modules. Cell Discov. 1, 15011 (2015).

 

 

2014

Beckert, U. et al. Biochemical and Biophysical Research Communications cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects. Biochem. Biophys. Res. Commun. 451, 497–502 (2014).

 

Otte, M. et al. CXCL14 is no direct modulator of CXCR4. FEBS Lett. 588, 4769–4775 (2014).

 

Liebscher, I. et al. A Tethered Agonist within the Ectodomain Activates the Adhesion G Protein-Coupled Receptors GPR126 and GPR133. Cell Rep. 9, 2018–2026 (2014).

 

Fang, Y. Label-Free Cell Phenotypic Drug Discovery. Comb. Chem. High Throughput Screen. 17, 566–578 (2014).

 

Fang, Y. Label-free drug discovery. Front. Pharmacol. 5, 1–8 (2014).

 

Febles, N. K., Ferrie, A. M. & Fang, Y. Label-Free Single Cell Kinetics of the Invasion of Spheroidal Colon Cancer Cells through 3D Matrigel. Anal. Chem. 86, 8842–8849 (2014).

 

Lee, M. Y. et al. A Comparison of Assay Performance Between the Calcium Mobilization and the Dynamic Mass Redistribution Technologies for the Human Urotensin Receptor. Assay Drug Dev. Technol. 12, 361–368 (2014).

 

Balenga, N. A. et al. Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling. Br. J. Pharmacol. 171, 5387–5406 (2014).

 

Carter, R. L. et al. Dynamic mass redistribution analysis of endogenous b -adrenergic receptor signaling in neonatal rat cardiac fibroblasts. Pharma. Res. Per. 2, 1–16 (2014).

 

Teutsch, C. et al. Detection of free fatty acid receptor 1 expression?: the critical role of negative and positive controls. Diabetologia 57, 776–780 (2014).

 

Meister, J. et al. The G Protein-coupled Receptor P2Y 14 Influences Insulin Release and Smooth Muscle Function in Mice. J. Biol. Chem. 289, 23353–23366 (2014).

 

Andradas, C. et al. Targeting CB 2 -GPR55 Receptor Heteromers Modulates Cancer Cell Signaling. J. Biol. Chem. 289, 21960–21972 (2014).

 

Schmitz, J. et al. Dualsteric Muscarinic Antagonists ? Orthosteric Binding Pose Controls Allosteric Subtype Selectivity. J. Med. Chem. 57, 6739–6750 (2014).

 

Mackenzie, A. E. et al. The Antiallergic Mast Cell Stabilizers Lodoxamide and Bufrolin as the First High and Equipotent Agonists of Human and Rat GPR35. Mol. Pharmacol. 85, 91–104 (2014).

 

Chen, X. et al. Rational Design of Partial Agonists for the Muscarinic M1 Acetylcholine Receptor. J. Med. Chem. 58, 560–576 (2014).

 

Ferrie, A. M., Zaytseva, N. & Fang, Y. Divergent Label-free Cell Phenotypic Overexpressed b2-Adrenergic Receptors. Sci. Rep. 4, 3828 (2014).

 

Orgovan, N. et al. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci. Rep. 4, 4034 (2014).

 

Sun, H. et al. Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel. Sci. Rep. 4, 4934 (2014).

 2013

Sundstr?m, L., Greasley, P. J., Engberg, S., Wallander, M. & Ryberg, E. Succinate receptor GPR91 , a G ai coupled receptor that increases intracellular calcium concentrations through PLC b. FEBS Lett. 587, 2399–2404 (2013).

 

Fang, Y. Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J. Pharmacol. Toxicol. Methods 67, 69–81 (2013).

 

Ahmedat, A. S. et al. Pro-fibrotic processes in human lung fibroblasts are driven by an autocrine / paracrine endothelinergic system. Br. J. Pharmacol. 168, 471–487 (2013).

 

Morse, M., Sun, H., Tran, E., Levenson, R. & Fang, Y. Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family. BMC Pharmacol. Toxicol. 14, 1–18 (2013).

 

Online, V. A., Ferrie, A. M., Wang, C. & Fang, Y. Integrative Biology identifies an intracellular signalling wave mediated through the b2-adrenergic receptor. Integr. Biol. 5, 1253–1261 (2013).

 

Christiansen, E. et al. Discovery of a Potent and Selective Free Fatty Acid Receptor 1 Agonist with Low Lipophilicity and High Oral Bioavailability. J. Med. Chem. 56, 982–992 (2013).

 

Hennig, D. et al. Novel Insights Into Appropriate Encapsulation Methods for Bioactive Compounds Into Polymers: A Study With Peptides and HDAC Inhibitors. Macromol. Biosci. 1–12 (2013).

 

Deng, H., Sun, H. & Fang, Y. Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M3 receptors. J. Pharmacol. Toxicol. Methods 68, 1–24 (2014).

 

Zaytseva, N. et al. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion. Sens. Actuators B Chem. 1–17 (2013).

 

Zhao, H., French, J. B., Fang, Y. & Benkovic, S. J. The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. Chem. Commun. (Camb). 49, 1–17 (2014).

 

Cho, Y. & Baldán, A. Quest for New Biomarkers in Atherosclerosis. Mo. Med. 110, 325–330 (2013).

 

Hennen, S. et al. Decoding Signaling and Function of the Orphan G Protein– Coupled Receptor GPR17 with a Small-Molecule Agonist. Sci. Signal. 6, 1–33 (2014).

 

Deng, H. & Fang, Y. The Three Catecholics Benserazide, Catechol and Pyrogallol are GPR35 Agonists. Pharmaceuticals 6, 500–509 (2013).

 

Deng, H., Wang, C. & Fang, Y. Label-free cell phenotypic assessment of the molecular mechanism of action of epidermal growth factor receptor inhibitors. RSC Adv. 3, 10370–10378 (2013).

 

Schrage, R. et al. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. Br. J. Pharmacol. 169, 357–370 (2013).

 




產(chǎn)品留言
標題
聯(lián)系人
聯(lián)系電話
內(nèi)容
驗證碼
點擊換一張
注:1.可以使用快捷鍵Alt+S或Ctrl+Enter發(fā)送信息!
2.如有必要,請您留下您的詳細聯(lián)系方式!
Copyright@ 2003-2025  世聯(lián)博研(北京)科技有限公司版權(quán)所有      電話:13466675923 傳真: 地址:北京市海淀區(qū)西三旗上奧世紀中心A座9層906 郵編:100096

措美县| 马山县| 珠海市| 稻城县| 昌图县| 临沭县| 日土县| 澳门| 石嘴山市| 策勒县| 左云县| 常熟市| 民乐县| 辽阳市| 芜湖市| 婺源县| 万州区| 兴文县| 万盛区| 长泰县| 鹤壁市| 丰顺县| 柳州市| 灌南县| 双鸭山市| 苏尼特右旗| 龙南县| 禹城市| 隆安县| 尉氏县| 龙江县| 涿鹿县| 白水县| 昭平县| 盘山县| 武鸣县| 确山县| 克东县| 尚义县| 汝阳县| 吉隆县|