欧美亚洲日韩在线娱乐论坛,欧美亚洲国产一区二区三区,欧美日韩在线一区二区三区,欧美日韩一区二区三区人妻

世聯(lián)博研(北京)科技有限公司 主營(yíng):Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷售技術(shù)服務(wù): 美國(guó)Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測(cè)試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國(guó)cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測(cè)試分析、aresis多點(diǎn)力學(xué)測(cè)試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測(cè)試分析系統(tǒng)
服務(wù)電話: 010-67529703
主營(yíng)產(chǎn)品: Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷售技術(shù)服務(wù): 美國(guó)Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測(cè)試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國(guó)cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測(cè)試分析、aresis多點(diǎn)力學(xué)測(cè)試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測(cè)試分析系統(tǒng)
聯(lián)系我們

active life scientific,Inc代理, BioDent代理,OsteoProbe? RUO代理

  • 如果您對(duì)該產(chǎn)品感興趣的話,可以
  • 產(chǎn)品名稱:active life scientific,Inc代理, BioDent代理,OsteoProbe? RUO代理
  • 產(chǎn)品型號(hào):BioDent
  • 產(chǎn)品展商:activelifescientific
  • 產(chǎn)品文檔:無相關(guān)文檔
簡(jiǎn)單介紹

BioDent 組織機(jī)械性質(zhì)參考點(diǎn)壓痕測(cè)量分析系統(tǒng),可以壓痕測(cè)試分析體內(nèi)/體外/離體和小大樣品/大樣品的機(jī)械特性(壓痕深度、剛度、能耗)參考點(diǎn)壓痕量測(cè)技術(shù)檢測(cè)活體內(nèi)骨骼組織之機(jī)械性質(zhì)

產(chǎn)品描述

簡(jiǎn)單介紹

BioDent,OsteoProbe®利用參考點(diǎn)壓痕量測(cè)技術(shù)檢測(cè)活體內(nèi)骨骼組織之機(jī)械性質(zhì)! BioDent? 骨等組織參考點(diǎn)壓痕測(cè)試分析系統(tǒng)可以測(cè)量骨和其他組織的力學(xué)特性,具有離體測(cè)量和在體測(cè)量?jī)煞N模式,可以直接在活體動(dòng)物上在體測(cè)試分析骨等組織等力學(xué)特性;能獲得以前無法獲得的臨床數(shù)據(jù),如骨和其他組織的材料性質(zhì),對(duì)骨等組織尤為適用。 OsteoProbe® RUO為便攜式在體/離體骨組織測(cè)量


 

BioDent,OsteoProbe®參考點(diǎn)納米壓痕系統(tǒng)的詳細(xì)介紹

 BioDent,OsteoProbe®利用參考點(diǎn)壓痕量測(cè)技術(shù)檢測(cè)活體內(nèi)骨骼組織之機(jī)械性質(zhì)!

 BioDent? 骨等組織參考點(diǎn)壓痕測(cè)試分析系統(tǒng)可以測(cè)量骨和其他組織的力學(xué)特性,具有離體測(cè)量和在體測(cè)量?jī)煞N模式,可以直接在活體動(dòng)物上在體測(cè)試分析骨等組織等力學(xué)特性;能獲得以前無法獲得的臨床數(shù)據(jù),如骨和其他組織的材料性質(zhì),對(duì)骨等組織尤為適用。 OsteoProbe® RUO為便攜式在體/離體骨組織測(cè)量?jī)x為BioDent? 骨等組織參考點(diǎn)壓痕測(cè)試分析系統(tǒng)手持版本

 

BioDent使用設(shè)計(jì)獨(dú)特的微探針在微米水平上對(duì)組織施壓。探針處于一個(gè)小套管內(nèi)部(2 A),套管可在組織上或組織內(nèi)部建立參考點(diǎn),然后便可測(cè)量軟、硬材料和生物材料的凹陷距離、相對(duì)剛度和能量耗散,從而**地檢測(cè)材料力學(xué)性質(zhì)(2 B)。在恒力工作模式下,BioDent測(cè)量探針相對(duì)于參考點(diǎn)移動(dòng)的距離,作為在此壓力下材料發(fā)生的形變。在恒定距離工作模式(即將推出)下,BioDent測(cè)量使材料發(fā)生此種程度的形變時(shí)需要的力。

BioDent可臨床測(cè)量材料性質(zhì)作為健康或病變組織的指標(biāo)。這些組織通常由不同的軟硬組織在微米尺度上組合形成(圖3),BioDent可在微米和毫米尺度上進(jìn)行測(cè)量,以用于不同的生物材料。

  

 

 OsteoProbe® RUO是在體測(cè)量骨組織材料性質(zhì)的**儀器,是實(shí)驗(yàn)室和臨床研究中測(cè)量骨質(zhì)量的有力工具。OsteoProbe® RUO是一種便攜式單手操作微壓痕儀,與測(cè)量骨密度的放射性方法(X射線、DXACT)具有不同的原理,它使用參考點(diǎn)壓痕技術(shù)來檢測(cè)材料對(duì)局部壓力的抵抗性。 

OsteoProbe® RUO使用特別設(shè)計(jì)的探針來進(jìn)行皮下測(cè)量,無須切開組織。探針刺空軟組織達(dá)到骨表面建立一個(gè)參考點(diǎn),當(dāng)探針受力達(dá)到一個(gè)預(yù)先設(shè)定的閾值后會(huì)自動(dòng)觸發(fā)更大的力進(jìn)行測(cè)量。軟件會(huì)記錄下來凹陷深度和力之間的函數(shù)關(guān)系,然后用聚甲基丙烯酸甲酯作為參照材料進(jìn)行校準(zhǔn)來獲得BMSi(材料強(qiáng)度指數(shù))。

 

 

What is BioDent??

BioDent? is a bench-top Reference Point Indentation platform that enables scientists to easily measure the material properties of tissues and biomaterials. The in vitro to in vivo testing modes set BioDent? apart from other instruments, enabling the acquisition of previously impossible material property data that has clinical relevance – clinically measurable material properties.

While conventional material property testers have existed for decades and contribute valuable data to modern research, their testing methods cannot be translated  into the clinical setting – a requirement by many of today’s research funding sources.  BioDent? enables translational research of biomaterial and tissue material properties.

Click the video below for an introduction to BioDent? and the flagship bone testing applications. Don’t research bone? That’s OK.  Soft material applications are under development today.

Why Do I Need BioDent??

BioDent? will enable you to easily and directly obtain clinically measurable material properties of your tissues or biomaterials. It is generally understood that material properties are an important contributor to tissue and biomaterial health. However, no instruments have been available to easily measure these properties in the laboratory – often causing this important information to be excluded from research.  Also, no tools have previously been available to measure tissue material properties in vivo – resulting in frequent exclusion of their evaluation in life science research altogether.  BioDent? is the first and only solution for life science researchers to easily and directly obtain clinically measurable material properties.

 

How Does BioDent? Work?

BioDent? uses a microscopic wire test probe to push on a tissue or biomaterial at the micrometer level.  The test probe can be sheathed inside a small cannula reference probe which establishes a reference point on or in the sample.  In force-controlled mode, BioDent? measures the distance the test probe moves relative to the reference point as an indication of how much the material gave-way or flowed when pushed on at controlled force.  In distance-controlled mode (coming soon) BioDent? measures the force required to push a test probe a predetermined distance into the material, relative to the reference point.

 

Click here to learn how BioDent? works.

 

What Does BioDent? Tell Me?

BioDent? provides clinically measurable material properties as a potential signature of tissue health or disease. Hard and soft tissues are comprised of many material components that come together to form the tissue at the micrometer length scale. Depending on your setup, BioDent? can probe across the micrometer to millimeter length scale in order to provide a robust measure across all material components in the tissue or biomaterial.  BioDent? can also provide previously impossible direct, in vivo measures of material properties – clinically measurable material properties.

 

How Easy is it to Use BioDent??

Like every scientific instrument there is some training required before using BioDent?, however unlike many scientific instruments, no technical background is necessary.  ActiveLife Scientific provides all training material with the instrument, sufficient to get a non-technical scientist up and running in a few hours or less.  For Advanced Users, certain BioDent? configurations offer access to waveform control inputs and data analysis outputs through layered interfaces (coming soon).





How BioDent Works on Hard Tissue?

 

BioDent? is a versatile (in vivo/in vitro/ex vivo and small/large sample) bench-top microindentation instrument for measuring the material properties of hard tissue as well as soft tissue and biomaterials. BioDent? uses Reference Point Indentation (RPI) technology to perform precise indentations into a sample to extract valuable material property information.

BioDent uses a unique probe assembly to establish a surface-localized reference point to accurately “feel” a material. This probe assembly includes a test probe contained within the sheath of an outer reference probe (see images below), which allows the reference probe to establish and maintain a reference point on the material enabling the test probe to precisely indent the material relative to that established reference point. The tutorial below focuses on using BioDent for hard tissue (ex: bone) measurements, for more on soft tissue measurements click here.

BioDent Measures:
?    Indentation Distances
?    Relative Stiffness
?    Energy Dissipation
** See below to learn what’s happening during a measurement at each phase of the Force vs Displacement curve (A through D).**

 

A. Reference probe establishes local reference point
The reference probe establishes a reference point at the sample’s surface and is secured in place. Next, the test probe moves towards the sample’s surface (section “A” of graph above).

 

B. Test probe identifies surface, ramp up force, observe loading
The test probe identifies the surface and the ramps up the applied force in a controlled manner and the depth of test probe penetration (displacement) is measured relative to the local reference point (section “B” of graph above).

 

C. Max force reached, then held constant to observe creep effects
The test probe applied force reaches the protocol-determined maximum where it is held constant for a set period of time to observe potential creep effects within the sample (section “C” of graph above).

 

D. Force is decreased, material causes test probe to retract, observe unloading
The test probe applied force in decreased in a controlled manner causing the probe to retract according to the force it experiences from the sample “pushing back” or “recovering from deformation”(section “D” of graph above).

 

What does BioDent Measure in Bone?

BioDent? generates Force vs Displacement data for each indentation cycle. The cycling capability allows for the acquisition of dynamic information such as local resistance to failure in harder tissues and Tan Delta in cartilage. Together the Force vs Displacement data allows for the quantification of relative changes in material stiffness, indentation depth, and energy dissipation.

Indentation Distance


Useful ResourcesExplore articles discussing the utility of  measuring Indentation Distances.
  • RPI correlates with bone toughness assessed using whole-bone traditional mechanical testing M. Allen et alBone 2013
  • RPI Invention & Background
  • RPI, Indentation distance, & Fracture Assessment
  • RPI Measurements In Vivo
  • What can RPI Measure?
Indentation distance (ID) is the depth reached by the test probe after a single indentation or series of indentations. Bone material’s ability to resist probe penetration has been conceptualized as the ease of separating mineralized collagen fibrils, and has shown promise as a potential fracture risk assessment measure.
Total Indentation Distance (TID): total depth reached by the test probe after a single indention or series of indentations.
Indentation Distance Increase (IDI): an output from a series of cyclic indentions, comparing the difference in depth between the first and last indention cycle. Testing bone’s ability to resist repeat indentations.

 

Relative Stiffness

Material A vs. Material B
AL = Material A Loading Slope
AU = Material A Unloading Slope
BL = Material B Loading Slope
BU = Material B Unloading Slope

Useful ResourcesExplore articles that discuss stiffness and its utility in hard and soft tissues. 
  • The tissue diagnostic instrumentHansma et al, Review of Scientific Instruments 2009
  • RPI and Measuring Soft Tissues
  • RPI Invention & Background
  • What can RPI Measure?
Changes in Relative Stiffness can be obtained from the loading and unloading slopes. The steeper the slope the stiffer the material since it requires greater force per micron of displacement. **Graph above displays a comparison of materials A & B after a single indention cycle. Material A is stiffer than B.**

 


Energy Dissipation

Useful Resources

Explore articles that discuss energy dissipation & its utility in hard and soft tissues.
  • Towards a standardized reference point indentation testing procedure. Setters & Jasiuk, Journal of the Mechanical Behavior of Biomedical Materials 2013
  • RPI & Measuring Soft Tissues
  • RPI Invention & Background
  • What can RPI Measure?

 

 

Energy Dissipation measures the material’s response to indentation and is typically manifested in the form of surface deformation. This is a metric for the elasticity or plasticity of the bone material and can be conceptualized as the capacity of the material to “recover” from the indentation. 



How BioDent Soft Tissue Works

 

BioDent? is a versatile (in vivo/in vitro/ex vivo and small/large sample) bench-top microindentation instrument for measuring the material properties of hard tissue as well as soft tissue and biomaterials. BioDent? uses Reference Point Indentation (RPI) technology to perform precise indentations into a sample to extract valuable material property information.

BioDent uses a unique probe assembly to establish a surface-localized reference point to accurately “feel” a material. This probe assembly includes a test probe contained within the sheath of an outer reference probe (see images below), which allows the reference probe to establish and maintain a reference point on the material enabling the test probe to precisely indent the material relative to that established reference point. The tutorial below focuses on using BioDent for soft tissue and biomaterial measurements, for more on hard tissue measurements click here.

 

    RPI Measures:
  • Force required to reach set displacement
  • Relative Stiffness
  • Energy Dissipation

** See below to learn what’s happening during and RPI measurement at each phase of the Force vs Displacement curve (A through D).**

 


A. Test probe identifies surface

The reference probe establishes a reference point at the sample’s surface and is secured in place. Next, the test probe moves towards the sample’s surface (section “A” of graph above).

 


B. Test probe ramps up downward force, observe loading

The test probe identifies the surface and the ramps up the applied force in a controlled manner and the depth of test probe penetration (displacement) is measured relative to the local reference point (section “B” of graph above).

 


C. Test probe reaches max displacement (designated by user)

The test probe reaches the protocol-determined maximum displacement (section “C” of graph above).

 


D. Force is decreased, material causes test probe to retract, observe unloading

The test probe applied force in decreased in a controlled manner causing the probe to retract according to the force it experiences from the sample “pushing back” or “recovering from deformation”(section “D” of graph above).

 

What does Reference-Point Indentation Measure in Soft Tissue?

RPI generates Force vs Displacement data for each indentation cycle. The cycling capability allows for the acquisition of dynamic information such as Tan Delta in cartilage. Together the Force vs Displacement data allows for thequantification of relative changes in material stiffness, required indentation force, and energy dissipation.

 

Relative Stiffness

Changes in Relative Stiffness can be obtained from the loading and unloading slopes. The steeper the slope the stiffer the material since it requires greater force per micron of displacement. **Graph above displays a comparison of materials A & B after a single indention cycle. Material A is more stiff than B.**

 

Energy Dissipation

參考文獻(xiàn)

Useful Soft Tissue Literature

 

  • Local tissue properties of human osteoarthritic cartilage correlate with magnetic resonance T1rho relaxation times
    Tang, S. Y. et al J. Ortho Research 201129, 1312-1319.
  • In situ materials characterization using the tissue diagnostic instrument
    Tang, S. Y. et al Polymer testing 201029, 159-163.
  • RPI & Measuring Soft Tissues

 




參考文獻(xiàn)

Reference Point Indentation Publications by Year

(69) “Application of reference point indentation for micro-mechanical surface characterization of calcium silicate based dental materials”
Antonijevi?, D., et al.
Biomedical Microdevices 2015.
RPI Technology: BioDent?

(68) “A direct role of collagen glycation in bone fracture”
Poundarik, A., et al.
Journal of the Mechanical Behavior of Biomedical Materials 2015.
RPI Technology: BioDent?

(67) “Strain differences in the attenuation of bone accrual in a young growing mouse model of insulin resistance.”
Rendina-Ruedy, E., et al.
Journal of Bone and Mineral Metabolism 2015.
RPI Technology: BioDent?

(66) “Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice.”
Portal-Nú?ez, S., et al.
The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2015.
RPI Technology: BioDent?

(65) “Estimation of local anisotropy of plexiform bone: Comparison between depth sensing micro-indentation and Reference Point Indentation.”
Dall’Ara, E. et al.
Journal of Biomechanics 2015.
RPI Technology: BioDent?

(64) “Bone material strength is associated with areal BMD but not with prevalent fractures in older women.”
Rud?ng, R., et al.
Osteoporosis International 2015.
RPI Technology: OsteoProbe®

(63) “A High Amount of Local Adipose Tissue is Associated with High Cortical Porosity and Low Bone Material Strength in Older Women.”
Sundh, D., et al.
Journal of Bone and Mineral Research 2015.
RPI Technology: OsteoProbe®

(62) “Age-related changes in the fracture resistance of male Fischer F344 rat bone.”
Uppuganti, S., et al.
Bone 2015.
RPI Technology: BioDent?

(61) “Effect of various testing conditions on results for a handheld reference point indentation instrument in horses.”
Lescun, Timothy B., et al.
American Journal of Veterinary Research 2015.
RPI Technology: OsteoProbe®

(60) “Site Dependent Reference Point Microindentation Complements Clinical Measures for Improved Fracture Risk Assessment at the Human Femoral Neck.”
Thurner, P. J., et al.
Journal of Bone and Mineral Research 2015.
RPI Technology: BioDent?

(59) “Determinants of bone strength and quality in diabetes mellitus in humans.”
Khosla, S., et al.
Bone 2015.
RPI Technology: OsteoProbe®

(58) “Microstructure and wettability of root canal dentine and root canal filling materials after different chemical irrigation.”
Busse, B., et al.
Applied Surface Science 2015.
RPI Technology: BioDent?

(57) “In vivo reference point indentation measurement variability in skeletally mature inbred mice.”
Organ, J., et al.
BoneKEy Reports 2015.
RPI Technology: BioDent?

(56) “Multiscale Predictors of Femoral Neck in situ Strength in Aging Women: Contributions of BMD, Cortical Porosity, Reference Point Indentation, and Nonenzymatic Glycation.”
Abraham, A. C., et al.
Journal of Bone and Mineral Research 2015.
RPI Technology: BioDent?

(55)”Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.”
Orestis L. Katsamenis, Thomas Jenkins b, Philipp J. Thurner.
Bone 2015.
RPI Technology: BioDent?

(54) “Are the High Hip Fracture Rates Among Norwegian Women Explained by Impaired Bone Material Properties?”
Daysi Duarte Sosa, Laila Vilaplana, Roberto Güerri, Xavier Nogues, Morten Fagerland, Adolfo Diez-Perez, Erik Eriksen.
JBMR 2015.
RPI Technology: OsteoProbe®

(53) “Bone Material Strength as measured by microindentation in vivo is decreased in patients with fragility fractures independently of Bone Mineral Density.” Malgo, F., N. A. T. Hamdy, S. E. Papapoulos and N. M. Appelman-Dijkstra.
The Journal of Clinical Endocrinology & Metabolism 2015.
RPI Technology: OsteoProbe®

(52) “Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.”
Mellibovsky, L., D. Prieto-Alhambra, F. Mellibovsky, R. Güerri-Fernández, X. Nogués, C. Randall, P. K. Hansma and A. Díez-Perez
Journal of Bone and Mineral Research. 2015 
RPI Technology: OsteoProbe®

(51) “True Gold or Pyrite: A Review of Reference Point Indentation for Assessing Bone Mechanical Properties In Vivo.”
Allen, M. R., et al.
Journal of Bone and Mineral Research2015
RPI Technology: OsteoProbe® and BioDent?
“Letter to the Editor Regarding Allen et al.” Khosla, Sundeep. JBMR2015
“Reply to Letter to the Editor.” Allen, Matt R. JBMR2015

(50) “Variability in reference point micro-indentation and Recommendations for testing cortical bone: Location, thickness and orientation heterogeneity.”
Coutts, L. V., T. Jenkins, T. Li, D. G. Dunlop, R. O. C. Oreffo, C. Cooper, N. C. Harvey, P. J. Thurner, N. K. Arden, J. M. Latham, P. Taylor, M. Baxter, N. Moss, C. Ball and K. Chan.
Journal of the Mechanical Behavior of Biomedical Materials 2015.
RPI Technology: BioDent

(49) “Variability in reference point microindentation and recommendations for testing cortical bone: Maximum load, sample orientation, mode of use, sample preparation and measurement spacing.”
Jenkins, T., L. V. Coutts, D. G. Dunlop, R. O. C. Oreffo, C. Cooper, N. C. Harvey and P. J. Thurner.
Journal of the Mechanical Behavior of Biomedical Materials 2015. 42(0): 311-324
RPI Technology: BioDent?

(48) “Lack of prolidase causes a bone phenotype both in human and in mouse.”
Besio, R., et al.
Bone 2015.
RPI Technology: BioDent?

(47) “Study of indentation of a sample equine bone using finite element simulation and single cycle reference point indentation.”
Hoffseth, K., C. Randall, P. Hansma and H. T. Y. Yang
Journal of the Mechanical Behavior of Biomedical Materials 2015. 
RPI Technology: OsteoProbe®

(46) Identifying novel clinical surrogates to assess human bone fracture toughness.”
Granke, M., A. J. Makowski, S. Uppuganti, M. D. Does and J. S. Nyman
Journal of Bone and Mineral Research 2015.
RPI Technology: BioDent?

(45) “Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone.”
Milovanovic, P., E. A. Zimmermann, C. Riedel, A. v. Scheidt, L. Herzog, M. Krause, D. Djonic, M. Djuric, K. Püschel, M. Amling, R. O. Ritchie and B. Busse
Biomaterials 2015.
RPI Technology: BioDent?

(44) “Characterization of Damage Mechanisms Associated with Reference Point Indentation in Human Bone.”
Bryan G. Beutel, Oran D. Kennedy
Bone 2015.
RPI Technology: BioDent?

(43) “Biomechanical Mechanisms: Resolving the Apparent Conundrum of Why Individuals with Type II Diabetes Show Increased Fracture Incidence Despite Having Normal BMD.”
Jepson, K., Schlecht, S.
Journal of Bone and Mineral Research 2014.
RPI Technology: OsteoProbe®

(42) “The Primary Function of gp130 Signaling in Osteoblasts Is To Maintain Bone Formation and Strength, Rather Than Promote Osteoclast Formation.”
Johnson, R. W., H. J. Brennan, C. Vrahnas, I. J. Poulton, N. E. McGregor, T. Standal, E. C. Walker, T.-T. Koh, H. Nguyen, N. C. Walsh, M. R. Forwood, T. J. Martin and N. A. Sims.
Journal of Bone and Mineral Research 2014. 29(6): 1492-1505.
RPI Technology: BioDent?

(41) “Nanoscale changes in collagen are reflected in physical and mechancial properties of bone at the microscale in diabetic rats”
Max A. Hammond a, Maxime A. Gallant b, David B. Burr b,d, Joseph M. Wallace
Bone 2014.
RPI Technology: BioDent?

(40) “Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls”
Milovanovic, P.; Rakocevic, Z.; Djonic, D.; Zivkovic, V.; Hahn, M.; Nikolic, S.; Amling, M.; Busse, B.; Djuric, M.
Experimental Gerontology 2014.
RPI Technology: BioDent?

(39) “Multi-scale analysis of bone chemistry, morphology and mechanics in the oim model of osteogenesis imperfecta.” Bart, Z. R., M. A. Hammond and J. M. Wallace.
Connective Tissue Research 2014.
RPI Technology: BioDent?

(38) “Towards a standardized reference point indentation testing procedure”
Setters, A.; Jasiuk, I.
Journal of the Mechanical Behavior of Biomedical Materials 201434, 57-65.
RPI Technology: BioDent?

(37) “Insights into Reference Point Indentation Involving Human Cortical Bone: Sensitivity to Tissue Anisotropy and Mechanical Behavior.”
Granke, M., A. Coulmier, S. Uppuganti, J. A. Gaddy, M. D. Does and J. S. Nyman
Journal of the Mechanical Behavior of Biomedical Materials 2014.
RPI Technology: BioDent?

(36) “Cortical Bone Mechanical Properties Are Altered in an Animal Model of Progressive Chronic Kidney Disease.” Newman, C. L., S. M. Moe, N. X. Chen, M. A. Hammond, J. M. Wallace, J. S. Nyman and M. R. Allen. 
PLoS ONE
 2014.
RPI Technology: BioDent?

(35) “EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis.”
Tonna, S., F. M. Takyar, C. Vrahnas, B. Crimeen-Irwin, P. W. M. Ho, I. J. Poulton, H. J. Brennan, N. E. McGregor, E. H. Allan, H. Nguyen, M. R. Forwood, L. Tatarczuch, E. J. Mackie, T. J. Martin and N. A. Sims.
 The FASEB Journal. 2014.
RPI Technology: 
BioDent?

(34) “Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness.”
Carriero, A., et al.
Bone 2014.
RPI Technology: BioDent?

(33) “Caspase-2 Maintains Bone Homeostasis by Inducing Apoptosis of Oxidatively-Damaged Osteoclasts”
Sharma, R.; Callaway, D.; Vanegas, D.; Bendele, M.; Lopez-Cruzan, M.; Horn, D.; Guda, T.; Fajardo, R.; Abboud-Werner, S.; Herman, B.
PLoS ONE 2014.
RPI Technology: BioDent?

(32) “Variability of in vivo reference point indentation in skeletally mature inbred rats.”
Allen, M. R., C. L. Newman, E. Smith, D. M. Brown and J. M. Organ.
Journal of Biomechanics 2014.
RPI Technology: BioDent?

(31) “Hyperlipidemia affects multiscale structure and strength of murine femur.”
Ascenzi, M.-G., A. Lutz, X. Du, L. Klimecky, N. Kawas, T. Hourany, J. Jahng, J. Chin, Y. Tintut, U. Nackenhors and J. Keyak.
Journal of Biomechanics 2014.
RPI Technology: BioDent?

(30)  “Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects.”
Gao, X., A. Usas, J. D. Proto, A. Lu, J. H. Cummins, A. Proctor, C.-W. Chen and J. Huard.
The FASEB Journal 2014, 28(8): 3792-3809.
RPI Technology: BioDent?

(29) “Antagonizing the αvβ3 Integrin Inhibits Angiogenesis and Impairs Woven but Not Lamellar Bone Formation Induced by Mechanical Loading”
Tomlinson, R. E.; Schmieder, A. H.; Quirk, J. D.; Lanza, G. M.; Silva, M. J.
Journal of Bone and Mineral Research 2014,
RPI Technology: BioDent?

(28) “Effect of sequential treatments with alendronate, parathyroid hormone (1–34) and raloxifene on cortical bone mass and strength in ovariectomized rats.”
Amugongo, S. K., W. Yao, J. Jia, W. Dai, Y.-A. E. Lay, L. Jiang, D. Harvey, E. A. Zimmermann, E. Schaible, N. Dave, R. O. Ritchie, D. B. Kimmel and N. E. Lane
Bone 2014.
RPI Technology: BioDent?

(27) “Modifications to Nano- and Microstructural Quality and the Effects on Mechanical Integrity in Paget’s Disease of Bone.”
Zimmermann, E. A., T. K?hne, H. A. Bale, B. Panganiban, B. Gludovatz, J. Zustin, M. Hahn, M. Amling, R. O. Ritchie and B. Busse.
Journal of Bone and Mineral Research 2014.
RPI Technology: BioDent?

(26) “Commentary on Sclerostin Deficiency is Linked to Altered Bone Composition ”
Erik Fink Eriksen
Journal of Bone and Mineral Research 2014.
RPI Technology: OsteoProbe®

(25) “The use of traditional and novel techniques to determine the hardness and indentation properties of immature radicular dentin treated with antibiotic medicaments followed by ethylenediaminetetraacetic acid”
Yassen ,G. H.; Al-Angari S. S.; Platt J. A.
European Journal of Dentistry 2014
RPI Technology: BioDent?

(24) “Osteoblast-Specific Deletion of Pkd2 Leads to Low-Turnover Osteopenia and Reduced Bone Marrow Adiposity.”
Xiao, Z., et al.
PLoS ONE 2014.
RPI Technology: BioDent?

(23) Microindentation for in vivo measurement of bone tissue material properties in atypical femoral fracture patients and controls”
Güerri‐Fernández, R. C.; Nogués, X.; Quesada Gómez, J. M.; Torres del Pliego, E.; Puig, L.; García‐Giralt, N.; Yoskovitz, G.; Mellibovsky, L.; Hansma, P. K.; Díez‐Pérez, A.
Journal of Bone and Mineral Research 201328, 162-168.
RPI Technology: BioDent?

(22) “RPI correlates with bone toughness assessed using whole bone tradiation mechanical testing”
Maxime A. Gallant, Drew M. Brown, Jason M. Organ, Matthew R. Allen, David B. Burr
Bone  2013.
RPI Technology: BioDent?

(21) “In Vivo assessment of bone quality in postmenopausal women with type 2 diabetes”
Farr, J. N.; Drake, M. T.; Amin, S.; Melton, L. J.; McCready, L. K.; Khosla, S.
Journal of Bone and Mineral Research 2013.
RPI Technology: OsteoProbe®

(20) “In vivo reference point indentation reveals positive effects of raloxifene on mechanical properties following 6 months of treatment in skeletally mature beagle dogs”
Aref, M.; Gallant, M. A.; Organ, J. M.; Wallace, J. M.; Newman, C. L.; Burr, D. B.; Brown, D. M.; Allen, M. R.
Bone 2013.
RPI Technology: BioDent?

(19)”Reference point indentation study of age-related changes in porcine femoral cortical bone”
Rasoulian, R.; Raeisi Najafi, A.; Chittenden, M.; Jasiuk, I.
Journal of biomechanics 2013.
RPI Technology: BioDent?

(18) “Applications of a new hand-held RPI instrament measuring bone material strength”
A. Diez-Perez, P. Hansma
J. Med. Devices 2013.
RPI Technology: OsteoProbe®

(17) “Elevated Mechanical Loading When Young Provides Lifelong Benefits to Cortical Bone Properties in Female Rats Independent of a Surgically Induced Menopause”
Stuart J. Warden, Matthew R. Galley, Andrea L. Hurd, Joseph M. Wallace, Maxime A. Gallant, Jeffrey S. Richard, and Lydia A. George
Endocrinology 2013.
RPI Technology: BioDent?

(16) “A novel approach to evaluate the effect of medicaments used in endodontic regeneration on root canal surface indentation”
Yassen, G. H.; Chu, T.-M. G.; Gallant, M. A.; Allen, M. R.; Vail, M. M.; Murray, P. E.; Platt, J. A.
Clinical oral investigations 2013.
RPI Technology: BioDent?

(15) “Measuring Bone Quality”
Elisa Torres-del-Pliego & Laia Vilaplana & Roberto Güerri-Fernández & Adolfo Diez-Pérez
Current Rheumatology Reports 2013
RPI Technology: OsteoProbe®

(14) “Intervertebral discs from spinal nondeformity and deformity patients have different mechancial and matrix properties”
Kevin K. Cheng, Sigurd H. Berven, Serena S. Hu,  Jeffrey C. Lotz
The Spine Journal 2013.
RPI Technology: BioDent?

(13) “Multi-scale analysis of bone chemistry, morphology and mechanics in the oim model of osteogenesis imperfecta.” Bart, Z. R., M. A. Hammond and J. M. Wallace.
Connective Tissue Research 2014.
RPI Technology: BioDent?

(12) “A new device for performing RPI without reference probe”
Daniel Bridges, Connor Randall, and Paul K. Hansma.
Review of Scientific Instruments 2012.
RPI Technology: OsteoProbe®

(11) “The contribution of the extracellular matrix to the fracture resistance of bone”
Jeffry S. Nyman & Alexander J. Makowski
Current Osteoporosis Reports
RPI Technology: BioDent?

(10) “The effects of freezing on the mechanical properties of bone”
Bryan Kaye, Connor Randall, Daniel Walsh and Paul Hansma
Open Bone Journal,  2012.
RPI Technology: BioDent?

(9) “Local tissue properties of human osteoarthritic cartilage correlate with magnetic resonance T1rho relaxation times”
Simon Y. Tang, Richard B. Souza, Michael Ries, Paul K. Hansma, Tamara Alliston, Xiaojuan Li
Journal of Orthopaedic Resesarch Month 2011.
RPI Technology: BioDent?

(8) “Validation of BioDent TDI as new clincal diagnostic method”
Wade
Advanced Materials Research 2011.
RPI Technology: BioDent?

(7) “Microindentation for in vivo measurement of bone tissue mechanical properties in humans”
Paul Hansma, et al.
Journal Bone Mineral Research  2010.
RPI Technology: BioDent?

(6) “In situ materials characterization using the tissue diagnostic instrument”
Tang, S. Y.; Mathews, P.; Randall, C.; Yurtsev, E.; Fields, K.; Wong, A.; Kuo, A. C.; Alliston, T.; Hansma, P.
Polymer testing 2010.
RPI Technology: BioDent?

(5) “”The tissue diagnostic instrument”
Hansma, P.; Yu, H.; Schultz, D.; Rodriguez, A.; Yurtsev, E. A.; Orr, J.; Tang, S.; Miller, J.; Wallace, J.; Zok, F.
Review of Scientific Instruments 2009.
RPI Technology: BioDent?

(4) “Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models ”
Susan Reinwald, Richard G. Peterson, Matt R. Allen and David B. Burr
Am. J. Physiol. Endocrinology and Metabolism 2009.
RPI Technology: BioDent?

(3) “The bone diagnostic instrument III: testing mouse femora”
Randall, C.; Mathews, P.; Yurtsev, E.; Sahar, N.; Kohn, D.; Hansma, P.
Review of Scientific Instruments 2009.
RPI Technology: BioDent?

(2) “The effect of NaF in vitro on the mechanical and material properties trabecular and cortical bone”
Philipp J. Thurner, Blake Erickson, Patricia Turner, Ralf Jungmann, Jason Lelujian, Alexander Proctor, James C. Weaver, Georg Schitter, Daniel E. Morse, and Paul K. Hansma
Advanced Materials 2009.
RPI Technology: BioDent?

(1) “Mechanical profiling of intervertebral discs”
David S. Schultz
Journal of Biomechanics 2009.
RPI Technology: BioDent?

產(chǎn)品留言
標(biāo)題
聯(lián)系人
聯(lián)系電話
內(nèi)容
驗(yàn)證碼
點(diǎn)擊換一張
注:1.可以使用快捷鍵Alt+S或Ctrl+Enter發(fā)送信息!
2.如有必要,請(qǐng)您留下您的詳細(xì)聯(lián)系方式!
Copyright@ 2003-2025  世聯(lián)博研(北京)科技有限公司版權(quán)所有      電話:13466675923 傳真: 地址:北京市海淀區(qū)西三旗上奧世紀(jì)中心A座9層906 郵編:100096

化隆| 平山县| 扎鲁特旗| 宣武区| 右玉县| 绍兴市| 罗田县| 汾阳市| 始兴县| 扎囊县| 辽源市| 宝丰县| 浦县| 永胜县| 通州市| 保康县| 衡山县| 贵州省| 陕西省| 太白县| 定结县| 社旗县| 新密市| 阳信县| 德兴市| 兴山县| 宁武县| 博野县| 金秀| 太保市| 八宿县| 临沧市| 宁国市| 镶黄旗| 凯里市| 蕉岭县| 怀宁县| 阿拉善盟| 临沧市| 大安市| 古丈县|