美國motionmonitorTM 一站式動作實(shí)時(shí)捕捉與多源數(shù)據(jù)完全實(shí)時(shí)同步分析系統(tǒng)
人體運(yùn)動源于神經(jīng)、肌肉和骨骼系統(tǒng)之間的協(xié)調(diào)互動。盡管了解運(yùn)動神經(jīng)肌肉和肌肉骨骼功能的潛在機(jī)制,但目前還沒有對復(fù)合神經(jīng)肌肉骨骼系統(tǒng)中神經(jīng)機(jī)械相互作用的相關(guān)實(shí)驗(yàn)理解。這是理解人類運(yùn)動的主要挑戰(zhàn)。 為了解決這個(gè)問題,MotionMonitor開發(fā)了綜合多尺度建模平臺,包括肌肉、骨骼和神經(jīng)模型等等。我們使用**的高密度肌電圖 (HD-EMG) 與盲源分離相結(jié)合,將干擾 HD-EMG 信號識別到由同時(shí)控制許多肌肉纖維的脊髓運(yùn)動神經(jīng)元放電的尖峰列車集合中。我們開發(fā)了由體內(nèi)運(yùn)動神經(jīng)元放電驅(qū)動的多尺度肌肉骨骼建模公式,用于計(jì)算所得肌肉骨骼力的高保真估計(jì)。這將使神經(jīng)控制的肌肉組織如何與骨骼組織相互作用的分析能力qian所未有,因此將為了解神經(jīng)肌肉/骨科ji病的病因、診斷和治liao開辟新的途徑。
我們的方案裝置可以協(xié)助師、運(yùn)動訓(xùn)練師和人體工程學(xué)專家進(jìn)行評估、篩查和再培訓(xùn): 實(shí)時(shí)信息提供了評估績效并向工作人員或患者提供即時(shí)反饋的能力。 同步的外圍數(shù)據(jù),例如 EMG 和測力臺,允許對可能導(dǎo)致運(yùn)動的其他因素進(jìn)行運(yùn)動學(xué)之外的研究。 用戶定義的、圖標(biāo)驅(qū)動的界面為您獨(dú)特的協(xié)議提供定制,以確??煽亢秃唵蔚臄?shù)據(jù)收集和分析。 實(shí)時(shí)生物反饋和虛擬現(xiàn)實(shí),使用多種方式顯示數(shù)據(jù),將評估擴(kuò)展到訓(xùn)練和行為改變。 原始的、處理過的或用戶定義的數(shù)據(jù)允許評估康復(fù)技術(shù)或工作場所環(huán)境的有效性。可以立即生成自定義報(bào)告以與臨床醫(yī)生、風(fēng)險(xiǎn)管理人員和其他人共享此數(shù)據(jù)。 在數(shù)據(jù)收集過程中,可以跟蹤、動畫和分析真實(shí)的物體,例如工具或茶杯,以監(jiān)控工人或患者與周圍環(huán)境的互動。 定制的交鑰匙解決方案,包括便攜式系統(tǒng),使用各種動作捕捉技術(shù),允許在任何環(huán)境下收集數(shù)據(jù)。 四、運(yùn)動生物力學(xué) 我們的方案裝置通過許多獨(dú)特的功能提供監(jiān)控運(yùn)動員和提高表現(xiàn)的能力,包括: 使用佳的運(yùn)動跟蹤技術(shù)來跟蹤、動畫和分析運(yùn)動員的運(yùn)動和運(yùn)動對象,如高爾夫、擊球、投球、網(wǎng)球、保齡球、騎自行車等。 執(zhí)行運(yùn)動特定分析以進(jìn)行評估、篩選和重返賽場。 以各種方法訪問和可視化數(shù)據(jù),包括報(bào)告摘要、條形圖和時(shí)間序列圖、自定義動畫和跟蹤。 使用音頻反饋為培訓(xùn)和性能增強(qiáng)提供實(shí)時(shí)反饋。使用虛擬現(xiàn)實(shí)擴(kuò)展實(shí)時(shí)反饋,為運(yùn)動員創(chuàng)造身臨其境的體驗(yàn)。 使用我們的運(yùn)動監(jiān)視器特殊用途應(yīng)用程序?qū)μ囟ㄟ\(yùn)動或與運(yùn)動相關(guān)的運(yùn)動進(jìn)行簡化的數(shù)據(jù)收集和分析,例如: 運(yùn)動監(jiān)視器跳躍版: PT、AT 和教練的理想工具,可使用反向運(yùn)動、深蹲或俯沖快速評估生物力學(xué)和神經(jīng)肌肉性能。 棒球運(yùn)動監(jiān)視器:研究質(zhì)量的動作捕捉解決方案,具有用于跟蹤和分析球員投球和擊球動作的簡化流程。 更多詳細(xì)配置方案,請咨詢產(chǎn)品顧問:李經(jīng)理,18618101725
3D動作捕捉是什么?
在你想象中的動作捕捉可能是有一些演員身穿貼有類似乒乓球的緊身衣上躥下跳。不過在這個(gè)過程當(dāng)中究竟發(fā)生了什么呢?其實(shí)很簡單:游戲或者電影的制作人想把演員身體(和面部)做出的復(fù)雜動作轉(zhuǎn)化成動畫角色。這個(gè)過程甚至不需要使用計(jì)算機(jī)的幫助。動畫師MaxFleischer在1914年的時(shí)候發(fā)明了“轉(zhuǎn)描”(rotoscoping)技術(shù),這種方法可以通過逐幀追蹤現(xiàn)場拍攝的片段,做出像《墨水瓶人》(OutoftheInkwell)那樣的片。**使用轉(zhuǎn)描技術(shù)的動畫長篇電影時(shí)迪斯尼在1937年上映的《白雪公主》。
即使在動畫師手繪出動畫角色的年代,他們通常都會參考視頻片段,研究某個(gè)場景中的表演,有時(shí)甚至?xí)阽R子中觀察自己。通過人手畫出的數(shù)字動畫被稱為“關(guān)鍵幀動畫”——或者在不同的“關(guān)鍵幀”之間填充角色的動作。
為了使這個(gè)過程變得自動化,動畫師們開始研究動作捕捉。來自西蒙弗雷澤大學(xué)的生物動力學(xué)專家TomCalvert利用機(jī)械捕捉套裝開拓了一個(gè)新的領(lǐng)域。有一家公司做出了“Waldo”臉部及身體捕捉設(shè)備(見上圖),用于捕捉一位演員的動作,并轉(zhuǎn)換成任天堂的馬里奧在展銷會上與觀眾的互動。與此同時(shí),麻省理工大學(xué)開發(fā)了一套基于LED的“視覺木偶”:這是個(gè)光學(xué)動作追蹤系統(tǒng)。首先利用這項(xiàng)技術(shù)的是來自公司Kleiser-Walczak的怪異的Dozo音樂視頻。