3-D運動捕捉系統(tǒng),18618101725(微信同),QQ:736597338 ,信箱slby800@163.com
美國MotionMonitor是套一站式交鑰匙3D運動捕捉系與分析統(tǒng),旨在集成各種硬件,包括但不限于運動跟蹤器、EMG(肌電圖)、測力臺、儀器式跑步機、儀器式樓梯、手傳感器、EEG腦電圖、定量腦電圖(quantitative EEG,qEEG)系統(tǒng)、數(shù)字視頻、事件標記和其他模擬設(shè)備、虛擬現(xiàn)實和觸覺設(shè)備,同時完全實時同步采集、分析多源數(shù)據(jù)。
-
●一套交鑰匙3D動作與運動捕捉、分析系統(tǒng),平臺旨在分析各種動作與運動的所有方面
-
●集各家之長為我所用:支持并提供廣泛市面上幾乎所有動作、運動硬件
-
●能夠?qū)⒛难芯哭D(zhuǎn)化為您自己的臨床、教學、人體工程學或運動應用
-
●全套、完整的多多尺度的生物力學研究和康復軟件
-
●根據(jù)需求一站式靈活選配,滿足各種運動與動作捕捉、監(jiān)測、分析
-
●提供更加化、系統(tǒng)化的運動動作捕獲分析數(shù)據(jù)(包括骨骼、肌肉、血管、神經(jīng)以及外部刺激等)
-
●完整的一站式交鑰匙3D動作捕捉分析系統(tǒng):集成所有市面主流動作、運動硬件之長,系統(tǒng)化的數(shù)據(jù)深挖、分析、整合。
-
●支持從廣泛的硬件(所有市面主流動作、運動硬件)進行實時采集。
-
●使用測力臺、手傳感器、EMG、眼動追蹤、視頻、EEG、虛擬現(xiàn)實、觸覺和模擬數(shù)據(jù)同步采集運動數(shù)據(jù),簡化采集和分析。
-
●通過原始或處理數(shù)據(jù)的圖形顯示提供即時回放。
-
●無需編程工作——從設(shè)置到數(shù)據(jù)收集再到分析,操作可以通過單選按鈕和下拉菜單完成。
-
●提供跨各種硬件系統(tǒng)的通用軟件平臺,可取各家之長、更高性價比。
-
●廣泛的功能和能力的多樣性,支持各種應用程序。
-
●市場上的數(shù)據(jù)采集、分析和可視化系統(tǒng)可測量人體運動、動作的所有方面。
基礎(chǔ)硬件:motionmonitor可集成各種捕捉硬件的系統(tǒng)裝置及完全同步采集分析多源數(shù)據(jù)的軟件
支持各種捕捉技術(shù):確保技術(shù)性價比
一站交鑰匙式服務:避免處理多個供應商的麻煩,MotionMmonitor支持團隊一鍵式呼叫將解決硬件和軟件相關(guān)問題:
典型應用簡介:
1、生物力學與生命科學
二、神經(jīng)科學與運動控制
三、康復與人體工程學:
目前主流的步態(tài)分析技術(shù)主要有以下幾種:基于計算機視覺的人體步態(tài)捕捉與分析、基于慣性傳感器的人體步態(tài)捕捉與分析、基于無線信號的人體步態(tài)捕捉與分析?;谟嬎銠C視覺的人體步態(tài)捕捉又分為基于紅外攝像頭、基于2D攝像頭、基于3D深度攝像頭等多種。上個世紀的技術(shù)路線還有基于機械式的步態(tài)捕捉。其他的技術(shù)路線還有基于電磁式的步態(tài)捕捉。
反光標記點既不會接收無線信號也不會向外發(fā)射任何無線信號,它的表面涂抹了一種特殊熒光材料,可以很好地讓紅外攝像頭識別到并反射回高質(zhì)量的圖像信號。
隨著3D深度相機技術(shù)的成熟,有許多研究者開始研究基于深度相機的動作捕捉系統(tǒng)[5][6]。3D深度攝像頭與2D攝像頭的區(qū)別在于,除了能夠獲取平面圖像外還可以獲得深度信息。3D深度技術(shù)目前廣泛應用在人體步態(tài)識別、三維重建、SLAM等領(lǐng)域。目前主流的3D深度攝像頭的技術(shù)路線有:(1)雙目立體視覺;(2)飛行時間(Timeoffly,TOF);(3)結(jié)構(gòu)光技術(shù)等。
雙目立體視覺即使用兩個2D平面攝像頭。兩個平面攝像頭獲得兩幅圖像,通過兩幅圖像算出深度信息。飛行時間即由雷達芯片發(fā)射出紅外激光散點,照射到物體后反射回雷達芯片的時間,由于光速已知,發(fā)射返回時間已知即可測量出攝像頭距物體的距離, 。結(jié)構(gòu)光是攝像頭發(fā)出特定的圖案,當被攝物體反射回這一圖案時,深度攝像頭再次接收這一圖案,通過比較發(fā)射出的圖案和接收的圖案從而測量出攝像頭距離被攝物體的深度信息。3D深度攝像頭方案對比如表1-1所示。
表1-1 3D深度攝像頭方案對比
利用結(jié)構(gòu)光方案的產(chǎn)品有微軟公司推出的Kinect,其廣泛的應用在體感交互、人體骨架識別、步態(tài)分析等領(lǐng)域。
基本原理是首先找到圖像中移動的物體,然后會對移動的物體進行深度評估,識別出人體的部位,然后將其從背景環(huán)境中分割出來。分割之后要做的工作就是模式匹配,將其匹配到骨骼系統(tǒng)上。算法流程如圖1-7所示。
1.2.1.3基于2D攝像頭的動作捕捉
利用2D攝像頭實現(xiàn)3D運動軌跡的捕捉是目前的技術(shù)研究。2D攝像頭即平面攝像頭,沒有深度信息。目前基于2D攝像頭的動作捕捉主要采用卷積神經(jīng)網(wǎng)路(CNN)將稀疏的2D人體姿態(tài)凸顯檢測的原理。但是此種捕捉方案需要長時間的運算,并不適合實時的運動分析,且輸出精度低?;?D攝像頭的動作捕捉目前可以捕捉人體局部的運動姿態(tài),且捕捉之間需要采集大量的數(shù)據(jù)樣本作為訓練數(shù)據(jù)集。2D攝像頭在深度信息的預測上存在著偏差,任何一點錯誤的數(shù)據(jù)都會導致很大的偏差,穩(wěn)定性*差。的挑戰(zhàn)在于攝像頭的遮擋以及快速的運動都是2D攝像頭很難追蹤到的。其優(yōu)點在于不需要任何的穿戴,且所需要的2D攝像頭觸手可得,成本*低,這對大眾化的應用是一個不錯的選擇。利用2D平面攝像頭的姿態(tài)捕捉應用如圖1-9所示。
慣性傳感器主要包括加速度計、陀螺儀、磁力計。其中加速度計、陀螺儀、磁力計多采用MEMS形式,所以稱之為MEMS慣性傳感器。三軸加速度計可以測量載體的三個軸向上的加速度,是一矢量,通過加速度我們也可以計算出載體靜止時的傾角。三軸陀螺儀可以測量出載體的三個軸向上角速度,通過對角速度積分我們可以得到角度, 。三軸磁力計可以測量出周圍的磁場強度及與地球磁場的夾角。通過融合加速度、角速度、磁力值的數(shù)據(jù)我們可以精準的得到載體的旋轉(zhuǎn)。融合后的數(shù)據(jù)一般用四元數(shù)或歐拉角來表示。其中四元數(shù)形式如 ,歐拉角包含俯仰角(Pitch)、橫滾角(Roll)、偏航角(Yaw)。得到載體的旋轉(zhuǎn)后再擬合各個骨骼的運動,從而計算出穿戴部位的運動姿態(tài)。通過對加速度、角速度的積分可以測量出穿戴者的步速、步距、步長等參數(shù)。上的MEMS慣性動作捕捉系統(tǒng)研發(fā)生產(chǎn)公司國外有荷蘭Xsens、國內(nèi)的北京孚心科技公司等。綜述其原理如圖1-11所示。
1.2.1.5其他技術(shù)路線
機械式動作捕捉依靠穿戴在人身體的機械裝置來測量關(guān)節(jié)角度以及位移。人體運動帶動機械裝置的運動,從機械裝置上的角度傳感器可以知道運動角度,根據(jù)角度和機械部位的長度從而計算出移動位移。這一技術(shù)早出現(xiàn)在20世紀,由于機械結(jié)構(gòu)的笨重,在步態(tài)分析方面機械動作捕捉早已退出發(fā)展的主流。但利用機械外骨骼的搬運發(fā)展成了主流。其形狀如圖1-12所示。
其他的技術(shù)路線還有基于聲學式的動作捕捉,基于電磁式的動作捕捉等。