MotionMonitor在涉及人體運動研究的廣泛應(yīng)用中提供實時解決方案。旨在分析人體運動的所有方面,從可能影響人體運動的外部刺激開始;響應(yīng)該模擬的大腦活動的測量和可視化;然后測量和分析影響運動所需的肌肉募集;報告標(biāo)準(zhǔn)運動 學(xué)和由此產(chǎn)生的聯(lián)合力。刺激以各種格式進行監(jiān)控,從一維目標(biāo)到在WorldViz和Unity中創(chuàng)建的3D沉浸式虛擬。視覺刺激呈現(xiàn)在簡單的平面屏幕、頭戴式顯示器、立體投影屏幕和的Bertec沉浸式穹頂上。大腦活動從 3 個不同的 EEG 系 統(tǒng)同步捕獲,提供輕松識別事件和關(guān)聯(lián)運動的能力。所有的 EMG 系統(tǒng)都對肌肉募集進行了物理測量。此外,可以使用具有用戶定義的優(yōu)化程序的集成肌肉模型對單個肌肉活動進行建模。反向動力學(xué)來自 10 個不同的動作捕捉系統(tǒng)和所有的測力臺生產(chǎn)商收集的數(shù)據(jù)。 軟件在用于捕獲數(shù)據(jù)的技術(shù)的廣度和它所包含的分析深度方面。
我們的方案裝置支持從骨科到運動機能學(xué)、運動科學(xué)、運動訓(xùn)練、力量與調(diào)節(jié)和運動醫(yī)學(xué)的生命科學(xué)研究。功能包括: 多種可視化方法,以有效的方式顯示您需要的數(shù)據(jù),包括文本;條形圖或時間序列圖;動畫;或 3D 可視化。 無需編程即可從下拉菜單中獲取原始和處理過的數(shù)據(jù),例如運動學(xué)和動力學(xué)。用戶定義的公式和腳本允許對步態(tài)分析、平衡、伸手和抓握等進行特定于應(yīng)用程序的分析。 各種生物力學(xué)建模功能,包括自定義關(guān)節(jié)中心定義和局部坐標(biāo)系的能力。支持標(biāo)準(zhǔn)方法,例如國際生物力學(xué)協(xié)會 (ISB) 的建議和用戶定義的模型??梢愿?、分析和可視化手、足和脊柱的各個骨骼。 CT-MRI 配準(zhǔn),用于創(chuàng)建具有特定主題骨骼幾何形狀的 3D 渲染。解剖標(biāo)志可以從掃描中自動提取并用于定義生物力學(xué)模型。 集成肌肉建模,使用用戶定義或?qū)氲?OpenSim 模型,直接從運動捕捉數(shù)據(jù)中可視化和分析肌肉力和力矩。 支持多種運動捕捉技術(shù),包括相機、慣性和電磁傳感器。多種運動學(xué)技術(shù)可以組合成一個實時混合運動捕捉系統(tǒng),以同時利用每種技術(shù)的優(yōu)勢。
神經(jīng)科學(xué)和運動控制的研究受益于內(nèi)置于我們方案的各種硬件和分析。 使用任何 Tobii 頭戴式眼動追蹤系統(tǒng)來捕捉與其他數(shù)據(jù)同步的實時 3D 眼動數(shù)據(jù)。分析視線交叉點。 使用 Biosemi 或 AntNeuro 硬件捕獲 EEG 數(shù)據(jù)。適用于坐姿、站立和活躍的任務(wù)。根據(jù)其他運動學(xué)數(shù)據(jù)在 EEG 數(shù)據(jù)中創(chuàng)建用戶定義的興趣點。 實時呈現(xiàn)視覺、聽覺和觸覺提示??梢允褂煤唵蔚膸缀涡螤?、條形圖或時間序列圖或特定于應(yīng)用程序的視覺效果(如紅綠燈)以多種方式呈現(xiàn)用戶定義的視覺提示。 使用 監(jiān)視器r 與 Unity 和 World Viz 的雙向通信將視覺反饋擴展到虛擬現(xiàn)實。 3D 可視化可以以多種方式呈現(xiàn)。一些例子包括: 手部實驗室:專為上肢研究設(shè)計的立體屏幕和桁架系統(tǒng)。為主體提供與屏幕上或屏幕前呈現(xiàn)的 3D 虛擬對象進行交互的能力。 沉浸式顯示器:一個完整的硬件和軟件解決方案,當(dāng)手臂的可視化被隱藏或擾動時,使用同位半鏡屏幕進行研究。 綜合研究環(huán)境系統(tǒng) (IRES):與 Bertec 合作創(chuàng)建的研究質(zhì)量環(huán)境。配備帶 3D 動作捕捉系統(tǒng)和儀表跑步機的沉浸式 VR 圓頂。
運動力學(xué)是量化研究與分析運動員在一般運動中的力學(xué)研究。透過數(shù)學(xué)模型、計算機模擬和量度對動作的角度和力進行分析用以提高運動員的性能。運動力學(xué)中有兩個研究領(lǐng)域:“靜力學(xué)”靜止?fàn)顟B(tài)(無運動)或以恒定速度移動的恒定運動狀態(tài)的系統(tǒng)研究和“動力學(xué)”包含加速度時間、位移、速度和速率中產(chǎn)生的力
運動生物力學(xué)(sports biomechanics 或 Biomechanics in Sports)應(yīng)用力學(xué)原理和方法研究生物體的外在機械運動的生物力學(xué)分支。狹義的運動生物力學(xué)研究體育運動中人體的運動規(guī)律。按照力學(xué)觀點,人體或一般生物體的運動是神經(jīng)系統(tǒng)、肌肉系統(tǒng)和骨骼系統(tǒng)協(xié)同工作的結(jié)果。神經(jīng)系統(tǒng)控制肌肉系統(tǒng),產(chǎn)生對骨骼系統(tǒng)的作用力以完成各種機械動作。運動生物力學(xué)的任務(wù)是研究人體或一般生物體,在外界力和內(nèi)部受控的肌力作用下的機械運動規(guī)律,它不討論神經(jīng)、肌肉和骨骼系統(tǒng)的內(nèi)部機制,后者屬于神經(jīng)生理學(xué)、軟組織力學(xué)和骨力學(xué)的研究范疇(生物固體力學(xué))。在運動生物力學(xué)中,神經(jīng)系統(tǒng)的控制和反饋的過程,以簡明的控制規(guī)律代替肌肉活動,簡化為受控的力矩發(fā)生器,作為研究對象的人體模型可忽略肌肉變形對質(zhì)量分布的影響,簡化為由多個剛性環(huán)節(jié)組成的多剛體系統(tǒng)。相鄰環(huán)節(jié)之間,以關(guān)節(jié)相連接,在受控的肌力作用下,產(chǎn)生圍繞關(guān)節(jié)的相對轉(zhuǎn)動,并影響系統(tǒng)的整體運動。 [1] 對于人體運動的研究,早可追溯到15世紀(jì)達·芬奇在力學(xué)和解剖學(xué)基礎(chǔ)上,對人體運動器官的形態(tài)和機能的解釋。