整合能力強(qiáng)、的實(shí)時(shí)3D運(yùn)動(dòng)捕捉分析系統(tǒng),可集成各捕捉分析硬件,數(shù)據(jù)實(shí)時(shí)同步分析,用于涉及復(fù)雜運(yùn)動(dòng)分析的臨床、生物力學(xué)、神經(jīng)控制和運(yùn)動(dòng)醫(yī)學(xué)應(yīng)用。
從豐富分析工具集合中生成的數(shù)據(jù)可立即通過所有數(shù)據(jù)輸出的圖形顯示進(jìn)行回放。令人驚嘆的3D計(jì)算機(jī)渲染對(duì)象動(dòng)畫可以被視為骨架、簡筆畫或人形。集成使用市場上廣泛硬件實(shí)現(xiàn)對(duì)人體運(yùn)動(dòng)、大腦活動(dòng)、眼球運(yùn)動(dòng)、肌肉募集和作用在身體上的外力實(shí)時(shí)測量。 MotionMonitor可以集成和準(zhǔn)確定位市場上運(yùn)動(dòng)、運(yùn)動(dòng)所有主流廠家硬件,數(shù)據(jù)完全同步。確保您選擇的組件協(xié)同工作,并使用的計(jì)算機(jī)渲染和圖形顯示實(shí)時(shí)呈現(xiàn)。數(shù)據(jù)輸出包括關(guān)節(jié)力和力矩,以及從虛擬環(huán)境同步接收的用戶定義變量,以及所有運(yùn)動(dòng)和動(dòng)力學(xué)數(shù)據(jù),包括用自上而下或自下而上的逆動(dòng)力學(xué)模型計(jì)算的聯(lián)合力和矩。為您獨(dú)特的研究需求提供、系統(tǒng)化、高質(zhì)量的數(shù)據(jù)。 數(shù)據(jù)可在不需要編程的直觀下拉菜單中使用。用戶可編寫腳本定義額外的數(shù)據(jù)和事件,并與統(tǒng)計(jì)模塊一起擴(kuò)展固有功能。
我們幫助您選擇并集成外圍系統(tǒng),確保實(shí)現(xiàn)您獨(dú)特的目標(biāo)。 各種捕捉相機(jī)、位置跟蹤器、EMG(肌電圖)、測力臺(tái)、儀器式跑步機(jī)、儀器式樓梯、手傳感器、EEG腦電圖、定量腦電圖(quantitative EEG,qEEG)系統(tǒng)、數(shù)字視頻、事件標(biāo)記和其他模擬設(shè)備、虛擬現(xiàn)實(shí)和觸覺設(shè)備等等。
幫助科學(xué)家解決神經(jīng)系統(tǒng)、感覺和肌肉骨骼系統(tǒng)以及身體在物理中的運(yùn)動(dòng)之間的功能聯(lián)系問題
神經(jīng)科學(xué)和運(yùn)動(dòng)控制的研究受益于內(nèi)置于我們方案的各種硬件和分析。 使用任何 Tobii 頭戴式眼動(dòng)追蹤系統(tǒng)來捕捉與其他數(shù)據(jù)同步的實(shí)時(shí) 3D 眼動(dòng)數(shù)據(jù)。分析視線交叉點(diǎn)。 使用 Biosemi 或 AntNeuro 硬件捕獲 EEG 數(shù)據(jù)。適用于坐姿、站立和活躍的任務(wù)。根據(jù)其他運(yùn)動(dòng)學(xué)數(shù)據(jù)在 EEG 數(shù)據(jù)中創(chuàng)建用戶定義的興趣點(diǎn)。 實(shí)時(shí)呈現(xiàn)視覺、聽覺和觸覺提示??梢允褂煤唵蔚膸缀涡螤?、條形圖或時(shí)間序列圖或特定于應(yīng)用程序的視覺效果(如紅綠燈)以多種方式呈現(xiàn)用戶定義的視覺提示。 使用 監(jiān)視器r 與 Unity 和 World Viz 的雙向通信將視覺反饋擴(kuò)展到虛擬現(xiàn)實(shí)。 3D 可視化可以以多種方式呈現(xiàn)。一些例子包括: 手部實(shí)驗(yàn)室:專為上肢研究設(shè)計(jì)的立體屏幕和桁架系統(tǒng)。為主體提供與屏幕上或屏幕前呈現(xiàn)的 3D 虛擬對(duì)象進(jìn)行交互的能力。 沉浸式顯示器:一個(gè)完整的硬件和軟件解決方案,當(dāng)手臂的可視化被隱藏或擾動(dòng)時(shí),使用同位半鏡屏幕進(jìn)行研究。 綜合研究環(huán)境系統(tǒng) (IRES):與 Bertec 合作創(chuàng)建的研究質(zhì)量環(huán)境。配備帶 3D 動(dòng)作捕捉系統(tǒng)和儀表跑步機(jī)的沉浸式 VR 圓頂。
全身體動(dòng)作運(yùn)動(dòng)抓捕分析系統(tǒng),Eyelink II眼動(dòng)追蹤同步數(shù)據(jù)采集分析系,運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)分析系統(tǒng),運(yùn)動(dòng)動(dòng)作獲取系統(tǒng),頭部和脊柱追蹤測試分析系統(tǒng),EMG同步數(shù)據(jù)采集分析系,全部動(dòng)作捕捉分析系統(tǒng),步態(tài)報(bào)告采集分析系統(tǒng),動(dòng)作綜合數(shù)據(jù)同步分析系統(tǒng),全身動(dòng)作運(yùn)動(dòng)獲取分析系統(tǒng)
3D動(dòng)作捕捉的工作原理是什么?
動(dòng)作捕捉可以將演員的動(dòng)作轉(zhuǎn)換到數(shù)字角色上。使用追蹤攝影機(jī)的捕捉系統(tǒng)(無論有無追蹤標(biāo)記)都可以被稱為是“光學(xué)捕捉”,而測量慣性或者機(jī)械動(dòng)作的系統(tǒng)就叫做“非光學(xué)”。后者的一個(gè)例子是SethRogan在《保羅》中扮演外星人時(shí)使用的XSensMVN慣性捕捉套裝。近也出現(xiàn)了一些其他的動(dòng)作捕捉技術(shù),例如LeapMotion的手指追蹤深度攝影系統(tǒng)和MYO腕帶,后者能夠檢測出手臂和手腕的肌肉活動(dòng)。Google的ProjectTango主要用于測繪,但它也配有類似于Kinect的深度傳感器,所以它也有進(jìn)行動(dòng)作捕捉的能力。
在捕捉的過程中很難預(yù)計(jì)演員的動(dòng)作轉(zhuǎn)換到動(dòng)畫角色上的效果,所以經(jīng)常會(huì)用到JamesCameron為《阿凡達(dá)》開發(fā)的“虛擬拍攝”(virtualcinematography)技術(shù)。簡單來說這就是實(shí)時(shí)顯示演員對(duì)應(yīng)的數(shù)字角色(在虛擬場景),這樣的話導(dǎo)演就可以看到動(dòng)畫角色的粗略“表演”。這種技術(shù)需要大量的計(jì)算,但是現(xiàn)在的計(jì)算機(jī)和顯卡的計(jì)算速度足以勝任這項(xiàng)工作